材料科学
化学气相沉积
氧化物
等离子体
多晶硅耗尽效应
分析化学(期刊)
光电子学
化学
冶金
电气工程
晶体管
栅氧化层
物理
环境化学
量子力学
电压
工程类
作者
Verena Mertens,Silke Dorn,Jonathan Langlois,Maximilian Stöhr,Yevgeniya Larionova,Welmoed Veurman,Rolf Brendel,Norbert Ambrosius,Aaron Vogt,Thomas Pernau,Helge Haverkamp,Thorsten Dullweber
标识
DOI:10.1002/solr.202300919
摘要
In this article, different in situ grown plasma‐enhanced chemical vapor deposition (PECVD)‐grown interfacial oxides for n‐type polysilicon‐passivating contacts are investigated. Herein, SiO x (N y )/n‐type amorphous silicon stacks created from either N 2 O plasma or O 2 plasma are applied to POLy‐silicon on Oxide interdigitated back‐contact (POLO IBC) solar cells using the structured deposition process through a glass mask to create the IBC layout. The impact of plasma exposure time for interfacial oxide growth on solar cell efficiencies is experimentally determined. In the POLO IBC cell results, it is shown that the PECVD oxides SiO x N y and SiO x with optimized plasma exposure time give similar maximum efficiencies of 23.8% and 23.7%, respectively. In these data, the feasibility to deposit a high‐quality in situ PECVD interfacial SiO x (N y ) layers for surface passivation and current transport of passivated contacts at the same time is demonstrated. For the SiO x /n‐type polysilicon stack, it is found that both plasma exposure time for interfacial oxide growth and polysilicon anneal temperature variations can lead to similar optimum of solar cell efficiencies. The current open‐circuit voltage losses due to metallization for the solar cells are analyzed and a realistic efficiency of 25.22% is calculated to achieve optimized POLO IBC solar cells applying the synergistic efficiency gain analysis on Quokka3 simulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI