材料科学
自愈水凝胶
断裂韧性
长度刻度
韧性
断裂(地质)
变形(气象学)
聚合物
复合材料
聚丙烯酰胺
断裂力学
高分子化学
机械
物理
作者
Jie Ma,Xizhe Zhang,Daochen Yin,Yijie Cai,Zihang Shen,Zhi Sheng,Jiabao Bai,Shaoxing Qu,Shuze Zhu,Zheng Jia
标识
DOI:10.1002/adma.202311795
摘要
Abstract Fractocohesive length, defined as the ratio of fracture toughness to work of fracture, measures the sensitivity of materials to fracture in the presence of flaws. The larger the fractocohesive length, the more flaw‐tolerant and crack‐resistant the hydrogel. For synthetic soft materials, the fractocohesive length is short, often on the scale of 1 mm. Here, highly flaw‐insensitive (HFI) single‐network hydrogels containing an entangled inhomogeneous polymer network of widely distributed chain lengths are designed. The HFI hydrogels demonstrate a centimeter‐scale fractocohesive length of 2.21 cm, which is the highest ever recorded for synthetic hydrogels, and an unprecedented fracture toughness of ≈13 300 J m −2 . The uncommon flaw insensitivity results from the inelastic crack blunting inherent to the highly inhomogeneous network. When the HFI hydrogel is stretched, a large number of short chains break while coiled long chains can disentangle, unwind, and straighten, producing large inelastic deformation that substantially blunts the crack tip in a plastic manner, thereby deconcentrating crack‐tip stresses and blocking crack extension. The flaw‐insensitive design strategy is applicable to various hydrogels such as polyacrylamide and poly(N,N‐dimethylacrylamide) hydrogels and enables the development of HFI soft composites.
科研通智能强力驱动
Strongly Powered by AbleSci AI