A Comprehensive Survey of Continual Learning: Theory, Method and Application

计算机科学 遗忘 利用 人工智能 背景(考古学) 机器学习 数据科学 古生物学 哲学 语言学 计算机安全 生物
作者
Liyuan Wang,Xingxing Zhang,Hang Su,Jun Zhu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-20 被引量:87
标识
DOI:10.1109/tpami.2024.3367329
摘要

To cope with real-world dynamics, an intelligent system needs to incrementally acquire, update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as continual learning, provides a foundation for AI systems to develop themselves adaptively. In a general sense, continual learning is explicitly limited by catastrophic forgetting, where learning a new task usually results in a dramatic performance drop of the old tasks. Beyond this, increasingly numerous advances have emerged in recent years that largely extend the understanding and application of continual learning. The growing and widespread interest in this direction demonstrates its realistic significance as well as complexity. In this work, we present a comprehensive survey of continual learning, seeking to bridge the basic settings, theoretical foundations, representative methods, and practical applications. Based on existing theoretical and empirical results, we summarize the general objectives of continual learning as ensuring a proper stability-plasticity trade-off and an adequate intra/inter-task generalizability in the context of resource efficiency. Then we provide a state-of-the-art and elaborated taxonomy, extensively analyzing how representative strategies address continual learning, and how they are adapted to particular challenges in various applications. Through an in-depth discussion of promising directions, we believe that such a holistic perspective can greatly facilitate subsequent exploration in this field and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泡泡糖发布了新的文献求助10
刚刚
theo完成签到 ,获得积分10
刚刚
刚刚
刚刚
田様应助小Q啊啾采纳,获得10
1秒前
花儿有点懒完成签到 ,获得积分10
1秒前
糖糖发布了新的文献求助10
1秒前
2秒前
sunshine完成签到,获得积分20
2秒前
particularc发布了新的文献求助10
3秒前
科研通AI2S应助Suagy采纳,获得10
3秒前
影像大侠完成签到,获得积分10
3秒前
4秒前
塔塔完成签到,获得积分10
4秒前
我是老大应助vip668采纳,获得10
4秒前
汉堡包应助YangSY采纳,获得10
4秒前
科研通AI2S应助欧阳采纳,获得10
5秒前
sunshine发布了新的文献求助10
5秒前
5秒前
rgaerva发布了新的文献求助10
5秒前
5秒前
Bgeelyu发布了新的文献求助10
5秒前
李爱国应助盛yyyy采纳,获得10
6秒前
科研通AI2S应助fifteen采纳,获得10
6秒前
6秒前
乐观若烟完成签到 ,获得积分10
6秒前
木草发布了新的文献求助10
7秒前
ZLQ2023发布了新的文献求助10
7秒前
ly发布了新的文献求助10
8秒前
我不完成签到,获得积分10
9秒前
菜菜Cc发布了新的文献求助10
9秒前
学术小天才完成签到,获得积分10
10秒前
宁安完成签到 ,获得积分10
10秒前
小小小曾啊啊啊啊完成签到,获得积分10
10秒前
HM发布了新的文献求助10
11秒前
在水一方应助Ariel96采纳,获得10
11秒前
鹤舞乾坤发布了新的文献求助10
11秒前
小灰灰发布了新的文献求助10
12秒前
麦旋风完成签到,获得积分10
13秒前
CHEN02完成签到,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143482
求助须知:如何正确求助?哪些是违规求助? 2794783
关于积分的说明 7812417
捐赠科研通 2450917
什么是DOI,文献DOI怎么找? 1304134
科研通“疑难数据库(出版商)”最低求助积分说明 627183
版权声明 601386