Distributed energy management of multi-area integrated energy system based on multi-agent deep reinforcement learning

强化学习 计算机科学 能量(信号处理) 分布式发电 能源管理 多智能体系统 分布式计算 人工智能 工程类 可再生能源 电气工程 统计 数学
作者
Lifu Ding,Youkai Cui,Gangfeng Yan,Yaojia Huang,Zhen Fan
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:157: 109867-109867 被引量:2
标识
DOI:10.1016/j.ijepes.2024.109867
摘要

This paper addresses the problem of distributed energy management in multi-area integrated energy systems (MA-IES) using a multi-agent deep reinforcement learning approach. The MA-IES consists of interconnected electric and thermal networks, incorporating renewable energy sources and heat conversion systems. The objective is to optimize the operation of the system while minimizing operational costs and maximizing renewable energy utilization. We propose a distributed energy management strategy that makes hierarchical decisions on intra-area heat energy and inter-area electric energy. The strategy is based on a multi-agent deep reinforcement learning framework, where each agent represents a component or unit in the MA-IES. We formulate the problem as a Markov Decision Process and employ Q-learning with experience replay and double networks to train the agents. The proposed strategy is evaluated using a simulation of a four-area MA-IES. The results demonstrate significant improvements in energy management compared to traditional methods, with higher renewable energy utilization and lower operational costs. Specifically, the strategy achieves 100% utilization of wind power, and decreases operational costs by 5.53%. Furthermore, it leverages the generalization capabilities of reinforcement learning to respond in real-time to uncertainties in demand and wind power output. The results highlight the advantages of the proposed strategy, making it a promising solution for optimizing the operation of multi-area integrated energy systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘络完成签到 ,获得积分10
1秒前
爱偷懒的猪完成签到,获得积分20
1秒前
lxy发布了新的文献求助10
1秒前
GGDA驳回了JamesPei应助
4秒前
4秒前
5秒前
Frank给liian7的求助进行了留言
6秒前
cywzhcr应助冷酷的画板采纳,获得10
7秒前
7秒前
juju发布了新的文献求助10
9秒前
9秒前
cuduoduo发布了新的文献求助10
9秒前
温梦花雨完成签到 ,获得积分10
10秒前
10秒前
10秒前
12秒前
海上生明月完成签到 ,获得积分10
12秒前
赘婿应助爱听歌的青筠采纳,获得10
14秒前
天天快乐应助YESKY采纳,获得10
14秒前
漂泊1991发布了新的文献求助10
14秒前
15秒前
爆米花应助德德采纳,获得10
15秒前
研友_VZG7GZ应助juju采纳,获得10
16秒前
怕黑的道天完成签到,获得积分10
17秒前
逗号先生完成签到,获得积分20
17秒前
nuannuan发布了新的文献求助10
18秒前
19秒前
20秒前
陈平安完成签到,获得积分10
20秒前
wxz完成签到,获得积分10
20秒前
21秒前
21秒前
医生发布了新的文献求助10
22秒前
海棠完成签到,获得积分10
23秒前
祁芷蕊发布了新的文献求助80
23秒前
ldgsd完成签到,获得积分10
23秒前
涨涨发布了新的文献求助10
24秒前
25秒前
SICHEN发布了新的文献求助20
26秒前
陈平安发布了新的文献求助10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161006
求助须知:如何正确求助?哪些是违规求助? 2812229
关于积分的说明 7895058
捐赠科研通 2471142
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631069
版权声明 602086