Distributed energy management of multi-area integrated energy system based on multi-agent deep reinforcement learning

强化学习 马尔可夫决策过程 计算机科学 能量(信号处理) 风力发电 能源管理 分布式计算 人工智能 工程类 可再生能源 马尔可夫过程 电气工程 数学 统计
作者
Lifu Ding,Youkai Cui,Gangfeng Yan,Yaojia Huang,Zhen Fan
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:157: 109867-109867 被引量:19
标识
DOI:10.1016/j.ijepes.2024.109867
摘要

This paper addresses the problem of distributed energy management in multi-area integrated energy systems (MA-IES) using a multi-agent deep reinforcement learning approach. The MA-IES consists of interconnected electric and thermal networks, incorporating renewable energy sources and heat conversion systems. The objective is to optimize the operation of the system while minimizing operational costs and maximizing renewable energy utilization. We propose a distributed energy management strategy that makes hierarchical decisions on intra-area heat energy and inter-area electric energy. The strategy is based on a multi-agent deep reinforcement learning framework, where each agent represents a component or unit in the MA-IES. We formulate the problem as a Markov Decision Process and employ Q-learning with experience replay and double networks to train the agents. The proposed strategy is evaluated using a simulation of a four-area MA-IES. The results demonstrate significant improvements in energy management compared to traditional methods, with higher renewable energy utilization and lower operational costs. Specifically, the strategy achieves 100% utilization of wind power, and decreases operational costs by 5.53%. Furthermore, it leverages the generalization capabilities of reinforcement learning to respond in real-time to uncertainties in demand and wind power output. The results highlight the advantages of the proposed strategy, making it a promising solution for optimizing the operation of multi-area integrated energy systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助feifeifei采纳,获得10
刚刚
开放如天完成签到 ,获得积分10
1秒前
laber应助fangfeng采纳,获得50
1秒前
搜集达人应助三峡好人采纳,获得10
1秒前
1秒前
2秒前
852应助海上钢琴家采纳,获得10
2秒前
luo发布了新的文献求助10
2秒前
2秒前
大个应助追尾的猫采纳,获得10
3秒前
CodeCraft应助闪闪的大炮采纳,获得10
4秒前
科研通AI6应助何小明采纳,获得10
4秒前
顾矜应助Flora采纳,获得10
4秒前
慕青应助奥丁蒂法采纳,获得10
4秒前
芫华发布了新的文献求助10
5秒前
6秒前
科研通AI6应助迷路的曼凡采纳,获得30
6秒前
照相机发布了新的文献求助10
6秒前
万能图书馆应助鲤鱼山人采纳,获得10
7秒前
7秒前
8秒前
抗氧剂完成签到,获得积分10
8秒前
lvlv发布了新的文献求助30
8秒前
cjchem完成签到,获得积分10
8秒前
8秒前
8秒前
螺蛳粉完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
597发布了新的文献求助10
9秒前
10秒前
10秒前
Miya完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
hmj发布了新的文献求助10
12秒前
抗氧剂发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321077
求助须知:如何正确求助?哪些是违规求助? 4462894
关于积分的说明 13888018
捐赠科研通 4353883
什么是DOI,文献DOI怎么找? 2391403
邀请新用户注册赠送积分活动 1385061
关于科研通互助平台的介绍 1354824