重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Distributed energy management of multi-area integrated energy system based on multi-agent deep reinforcement learning

强化学习 马尔可夫决策过程 计算机科学 能量(信号处理) 风力发电 能源管理 分布式计算 人工智能 工程类 可再生能源 马尔可夫过程 电气工程 数学 统计
作者
Lifu Ding,Youkai Cui,Gangfeng Yan,Yaojia Huang,Zhen Fan
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:157: 109867-109867 被引量:19
标识
DOI:10.1016/j.ijepes.2024.109867
摘要

This paper addresses the problem of distributed energy management in multi-area integrated energy systems (MA-IES) using a multi-agent deep reinforcement learning approach. The MA-IES consists of interconnected electric and thermal networks, incorporating renewable energy sources and heat conversion systems. The objective is to optimize the operation of the system while minimizing operational costs and maximizing renewable energy utilization. We propose a distributed energy management strategy that makes hierarchical decisions on intra-area heat energy and inter-area electric energy. The strategy is based on a multi-agent deep reinforcement learning framework, where each agent represents a component or unit in the MA-IES. We formulate the problem as a Markov Decision Process and employ Q-learning with experience replay and double networks to train the agents. The proposed strategy is evaluated using a simulation of a four-area MA-IES. The results demonstrate significant improvements in energy management compared to traditional methods, with higher renewable energy utilization and lower operational costs. Specifically, the strategy achieves 100% utilization of wind power, and decreases operational costs by 5.53%. Furthermore, it leverages the generalization capabilities of reinforcement learning to respond in real-time to uncertainties in demand and wind power output. The results highlight the advantages of the proposed strategy, making it a promising solution for optimizing the operation of multi-area integrated energy systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助刘老板采纳,获得10
1秒前
NexusExplorer应助青年才俊采纳,获得10
1秒前
1秒前
CodeCraft应助jz采纳,获得10
1秒前
正直依风完成签到,获得积分10
1秒前
科研通AI6应助yunsww采纳,获得10
1秒前
Purplesky完成签到,获得积分10
2秒前
梓安发布了新的文献求助10
3秒前
3秒前
菲菲公主完成签到 ,获得积分10
4秒前
研友_ZlxK6Z发布了新的文献求助10
4秒前
务实三颜发布了新的文献求助10
4秒前
4秒前
Aimee发布了新的文献求助10
5秒前
5秒前
5秒前
CCCr完成签到,获得积分10
5秒前
科研通AI6应助dfsdf采纳,获得10
5秒前
5秒前
大芳儿完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
佳思思完成签到,获得积分10
6秒前
罗沫沫完成签到,获得积分10
6秒前
6秒前
6秒前
景Q同学发布了新的文献求助10
6秒前
6秒前
huangjixiang完成签到,获得积分10
7秒前
晓晓发布了新的文献求助10
7秒前
yuyuyu完成签到,获得积分10
7秒前
思源应助幽默尔蓝采纳,获得10
7秒前
浮游应助渊渟岳峙采纳,获得10
8秒前
hyw发布了新的文献求助30
8秒前
8秒前
YH完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
英姑应助223老师采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567