Distributed energy management of multi-area integrated energy system based on multi-agent deep reinforcement learning

强化学习 马尔可夫决策过程 计算机科学 能量(信号处理) 风力发电 能源管理 分布式计算 人工智能 工程类 可再生能源 马尔可夫过程 电气工程 数学 统计
作者
Lifu Ding,Youkai Cui,Gangfeng Yan,Yaojia Huang,Zhen Fan
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:157: 109867-109867 被引量:19
标识
DOI:10.1016/j.ijepes.2024.109867
摘要

This paper addresses the problem of distributed energy management in multi-area integrated energy systems (MA-IES) using a multi-agent deep reinforcement learning approach. The MA-IES consists of interconnected electric and thermal networks, incorporating renewable energy sources and heat conversion systems. The objective is to optimize the operation of the system while minimizing operational costs and maximizing renewable energy utilization. We propose a distributed energy management strategy that makes hierarchical decisions on intra-area heat energy and inter-area electric energy. The strategy is based on a multi-agent deep reinforcement learning framework, where each agent represents a component or unit in the MA-IES. We formulate the problem as a Markov Decision Process and employ Q-learning with experience replay and double networks to train the agents. The proposed strategy is evaluated using a simulation of a four-area MA-IES. The results demonstrate significant improvements in energy management compared to traditional methods, with higher renewable energy utilization and lower operational costs. Specifically, the strategy achieves 100% utilization of wind power, and decreases operational costs by 5.53%. Furthermore, it leverages the generalization capabilities of reinforcement learning to respond in real-time to uncertainties in demand and wind power output. The results highlight the advantages of the proposed strategy, making it a promising solution for optimizing the operation of multi-area integrated energy systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
N7发布了新的文献求助10
1秒前
善学以致用应助一口啵啵采纳,获得10
3秒前
淡然尔蝶完成签到,获得积分10
4秒前
4秒前
思源应助帅气笑槐采纳,获得10
5秒前
xxfsx应助老婆最大0810采纳,获得10
6秒前
hh发布了新的文献求助10
8秒前
小粒橙完成签到 ,获得积分10
9秒前
10秒前
zh完成签到,获得积分10
11秒前
完美世界应助YChenCui采纳,获得10
12秒前
13秒前
13秒前
懒羊羊完成签到,获得积分10
14秒前
xiangjun完成签到,获得积分10
16秒前
Jennie369发布了新的文献求助10
17秒前
科目三应助Bosen采纳,获得10
17秒前
幸福的怜翠完成签到,获得积分10
18秒前
勤奋的梦桃关注了科研通微信公众号
19秒前
20秒前
21秒前
完美世界应助xiangjun采纳,获得10
22秒前
22秒前
自觉的凛完成签到,获得积分10
22秒前
24秒前
25秒前
25秒前
自觉的凛发布了新的文献求助10
25秒前
styrene应助谦让的语儿采纳,获得10
25秒前
27秒前
27秒前
27秒前
ru完成签到 ,获得积分10
27秒前
尹天奇完成签到,获得积分10
28秒前
豆沙包没有豆完成签到,获得积分10
28秒前
29秒前
Bosen发布了新的文献求助10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818