Distributed energy management of multi-area integrated energy system based on multi-agent deep reinforcement learning

强化学习 计算机科学 能量(信号处理) 分布式发电 能源管理 多智能体系统 分布式计算 人工智能 工程类 可再生能源 电气工程 统计 数学
作者
Lifu Ding,Youkai Cui,Gangfeng Yan,Yaojia Huang,Zhen Fan
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier BV]
卷期号:157: 109867-109867 被引量:2
标识
DOI:10.1016/j.ijepes.2024.109867
摘要

This paper addresses the problem of distributed energy management in multi-area integrated energy systems (MA-IES) using a multi-agent deep reinforcement learning approach. The MA-IES consists of interconnected electric and thermal networks, incorporating renewable energy sources and heat conversion systems. The objective is to optimize the operation of the system while minimizing operational costs and maximizing renewable energy utilization. We propose a distributed energy management strategy that makes hierarchical decisions on intra-area heat energy and inter-area electric energy. The strategy is based on a multi-agent deep reinforcement learning framework, where each agent represents a component or unit in the MA-IES. We formulate the problem as a Markov Decision Process and employ Q-learning with experience replay and double networks to train the agents. The proposed strategy is evaluated using a simulation of a four-area MA-IES. The results demonstrate significant improvements in energy management compared to traditional methods, with higher renewable energy utilization and lower operational costs. Specifically, the strategy achieves 100% utilization of wind power, and decreases operational costs by 5.53%. Furthermore, it leverages the generalization capabilities of reinforcement learning to respond in real-time to uncertainties in demand and wind power output. The results highlight the advantages of the proposed strategy, making it a promising solution for optimizing the operation of multi-area integrated energy systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助Lee采纳,获得10
2秒前
sincyking完成签到,获得积分10
4秒前
共享精神应助N型半导体采纳,获得10
5秒前
糜轩完成签到,获得积分10
6秒前
huangyi发布了新的文献求助10
6秒前
7秒前
高路完成签到 ,获得积分10
7秒前
无花果应助开朗满天采纳,获得10
7秒前
8秒前
完美的火龙果完成签到,获得积分10
10秒前
Yuki酱发布了新的文献求助10
12秒前
13秒前
13秒前
666应助阔落采纳,获得10
13秒前
15秒前
Jiaming应助Pp采纳,获得10
18秒前
牛牛眉目发布了新的文献求助10
18秒前
Lee发布了新的文献求助10
19秒前
jt发布了新的文献求助10
20秒前
20秒前
21秒前
511完成签到 ,获得积分10
22秒前
sail完成签到,获得积分20
22秒前
君君发布了新的文献求助10
24秒前
24秒前
爆米花应助科研通管家采纳,获得10
25秒前
敬老院N号应助科研通管家采纳,获得30
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
bkagyin应助科研通管家采纳,获得10
26秒前
彭于彦祖应助科研通管家采纳,获得30
26秒前
26秒前
英俊的铭应助科研通管家采纳,获得10
26秒前
彭于晏应助科研通管家采纳,获得10
26秒前
斯文败类应助科研通管家采纳,获得10
26秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
搜集达人应助科研通管家采纳,获得10
26秒前
26秒前
852应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388