Distributed energy management of multi-area integrated energy system based on multi-agent deep reinforcement learning

强化学习 马尔可夫决策过程 计算机科学 能量(信号处理) 风力发电 能源管理 分布式计算 人工智能 工程类 可再生能源 马尔可夫过程 电气工程 数学 统计
作者
Lifu Ding,Youkai Cui,Gangfeng Yan,Yaojia Huang,Zhen Fan
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:157: 109867-109867 被引量:19
标识
DOI:10.1016/j.ijepes.2024.109867
摘要

This paper addresses the problem of distributed energy management in multi-area integrated energy systems (MA-IES) using a multi-agent deep reinforcement learning approach. The MA-IES consists of interconnected electric and thermal networks, incorporating renewable energy sources and heat conversion systems. The objective is to optimize the operation of the system while minimizing operational costs and maximizing renewable energy utilization. We propose a distributed energy management strategy that makes hierarchical decisions on intra-area heat energy and inter-area electric energy. The strategy is based on a multi-agent deep reinforcement learning framework, where each agent represents a component or unit in the MA-IES. We formulate the problem as a Markov Decision Process and employ Q-learning with experience replay and double networks to train the agents. The proposed strategy is evaluated using a simulation of a four-area MA-IES. The results demonstrate significant improvements in energy management compared to traditional methods, with higher renewable energy utilization and lower operational costs. Specifically, the strategy achieves 100% utilization of wind power, and decreases operational costs by 5.53%. Furthermore, it leverages the generalization capabilities of reinforcement learning to respond in real-time to uncertainties in demand and wind power output. The results highlight the advantages of the proposed strategy, making it a promising solution for optimizing the operation of multi-area integrated energy systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuaoo完成签到,获得积分10
1秒前
共享精神应助Wednesday Chong采纳,获得10
1秒前
DDL完成签到 ,获得积分10
5秒前
6秒前
整箱驳回了赘婿应助
6秒前
SciGPT应助乐观蛋挞采纳,获得10
6秒前
6秒前
renzhenuexi应助包容成败采纳,获得10
7秒前
8秒前
希望天下0贩的0应助liuaoo采纳,获得10
8秒前
8秒前
科研通AI6应助miugmiug采纳,获得10
9秒前
9秒前
酷波er应助GT采纳,获得10
9秒前
充电宝应助诚心山芙采纳,获得10
9秒前
10秒前
小二郎应助奶茶不要冰采纳,获得10
10秒前
12秒前
12秒前
xhtnt97发布了新的文献求助10
13秒前
木木发布了新的文献求助10
13秒前
roy_chiang发布了新的文献求助10
13秒前
13秒前
14秒前
kkkk发布了新的文献求助10
14秒前
菜青虫完成签到,获得积分10
15秒前
Todd完成签到 ,获得积分10
16秒前
17秒前
17秒前
Snape发布了新的文献求助10
17秒前
17秒前
浮浮世世发布了新的文献求助10
17秒前
知意发布了新的文献求助10
18秒前
mikasa完成签到,获得积分10
18秒前
19秒前
刚睡醒发布了新的文献求助10
20秒前
20秒前
20秒前
田様应助小贝采纳,获得10
21秒前
gengsumin完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394047
求助须知:如何正确求助?哪些是违规求助? 4515419
关于积分的说明 14053732
捐赠科研通 4426550
什么是DOI,文献DOI怎么找? 2431454
邀请新用户注册赠送积分活动 1423549
关于科研通互助平台的介绍 1402541