Distributed energy management of multi-area integrated energy system based on multi-agent deep reinforcement learning

强化学习 马尔可夫决策过程 计算机科学 能量(信号处理) 风力发电 能源管理 分布式计算 人工智能 工程类 可再生能源 马尔可夫过程 电气工程 统计 数学
作者
Lifu Ding,Youkai Cui,Gangfeng Yan,Yaojia Huang,Zhen Fan
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier BV]
卷期号:157: 109867-109867 被引量:14
标识
DOI:10.1016/j.ijepes.2024.109867
摘要

This paper addresses the problem of distributed energy management in multi-area integrated energy systems (MA-IES) using a multi-agent deep reinforcement learning approach. The MA-IES consists of interconnected electric and thermal networks, incorporating renewable energy sources and heat conversion systems. The objective is to optimize the operation of the system while minimizing operational costs and maximizing renewable energy utilization. We propose a distributed energy management strategy that makes hierarchical decisions on intra-area heat energy and inter-area electric energy. The strategy is based on a multi-agent deep reinforcement learning framework, where each agent represents a component or unit in the MA-IES. We formulate the problem as a Markov Decision Process and employ Q-learning with experience replay and double networks to train the agents. The proposed strategy is evaluated using a simulation of a four-area MA-IES. The results demonstrate significant improvements in energy management compared to traditional methods, with higher renewable energy utilization and lower operational costs. Specifically, the strategy achieves 100% utilization of wind power, and decreases operational costs by 5.53%. Furthermore, it leverages the generalization capabilities of reinforcement learning to respond in real-time to uncertainties in demand and wind power output. The results highlight the advantages of the proposed strategy, making it a promising solution for optimizing the operation of multi-area integrated energy systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陀飞轮发布了新的文献求助10
1秒前
1秒前
2秒前
我来电了完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
思源应助翱翔的蚂蚁采纳,获得10
3秒前
科研通AI6应助徐昊雯采纳,获得10
4秒前
科研通AI5应助我爱乒乓球采纳,获得10
5秒前
5秒前
淡定的松子完成签到 ,获得积分10
5秒前
5秒前
游手好闲的咸鱼完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
7秒前
非常完成签到,获得积分10
7秒前
小水滴发布了新的文献求助10
7秒前
吕培森完成签到 ,获得积分10
7秒前
无聊的发箍完成签到,获得积分10
7秒前
Joey完成签到 ,获得积分10
7秒前
Tetrahydron发布了新的文献求助10
8秒前
8秒前
8秒前
田様应助cc采纳,获得10
9秒前
9秒前
元骑走之辣完成签到 ,获得积分10
9秒前
上官若男应助爱我不上火采纳,获得10
9秒前
10秒前
JamesPei应助生动的翠容采纳,获得10
10秒前
sesu完成签到,获得积分10
10秒前
byX发布了新的文献求助10
11秒前
eagle14835发布了新的文献求助10
11秒前
LEAOMIC发布了新的文献求助10
12秒前
风中尔蝶发布了新的文献求助10
12秒前
充电宝应助Laospakalfski采纳,获得10
12秒前
yuyuyuyuyuyuyu完成签到,获得积分10
12秒前
木木完成签到,获得积分10
12秒前
翱翔的蚂蚁完成签到,获得积分10
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482