Distributed energy management of multi-area integrated energy system based on multi-agent deep reinforcement learning

强化学习 马尔可夫决策过程 计算机科学 能量(信号处理) 风力发电 能源管理 分布式计算 人工智能 工程类 可再生能源 马尔可夫过程 电气工程 数学 统计
作者
Lifu Ding,Youkai Cui,Gangfeng Yan,Yaojia Huang,Zhen Fan
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:157: 109867-109867 被引量:19
标识
DOI:10.1016/j.ijepes.2024.109867
摘要

This paper addresses the problem of distributed energy management in multi-area integrated energy systems (MA-IES) using a multi-agent deep reinforcement learning approach. The MA-IES consists of interconnected electric and thermal networks, incorporating renewable energy sources and heat conversion systems. The objective is to optimize the operation of the system while minimizing operational costs and maximizing renewable energy utilization. We propose a distributed energy management strategy that makes hierarchical decisions on intra-area heat energy and inter-area electric energy. The strategy is based on a multi-agent deep reinforcement learning framework, where each agent represents a component or unit in the MA-IES. We formulate the problem as a Markov Decision Process and employ Q-learning with experience replay and double networks to train the agents. The proposed strategy is evaluated using a simulation of a four-area MA-IES. The results demonstrate significant improvements in energy management compared to traditional methods, with higher renewable energy utilization and lower operational costs. Specifically, the strategy achieves 100% utilization of wind power, and decreases operational costs by 5.53%. Furthermore, it leverages the generalization capabilities of reinforcement learning to respond in real-time to uncertainties in demand and wind power output. The results highlight the advantages of the proposed strategy, making it a promising solution for optimizing the operation of multi-area integrated energy systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuzhuzhu发布了新的文献求助10
刚刚
无极微光应助阔达的冷霜采纳,获得20
1秒前
你好发布了新的文献求助10
2秒前
凉生发布了新的文献求助10
2秒前
3秒前
田様应助CYCY采纳,获得10
3秒前
CodeCraft应助M2106采纳,获得10
3秒前
3秒前
3秒前
SCI的芷蝶发布了新的文献求助10
4秒前
4秒前
5秒前
谢皮皮发布了新的文献求助10
5秒前
无花果应助Lee采纳,获得10
6秒前
nan发布了新的文献求助10
6秒前
6秒前
6秒前
尔尔发布了新的文献求助10
7秒前
7秒前
7秒前
淑文完成签到 ,获得积分10
8秒前
无极微光应助汉堡包采纳,获得20
8秒前
深情安青应助bakbak采纳,获得10
9秒前
YYH发布了新的文献求助10
9秒前
xiexie发布了新的文献求助10
9秒前
10秒前
10秒前
哎一古完成签到,获得积分10
12秒前
obsession发布了新的文献求助10
13秒前
深情安青应助yaoxueli采纳,获得30
13秒前
归海连碧完成签到,获得积分10
15秒前
15秒前
长白雪茫茫完成签到,获得积分20
17秒前
18秒前
ss发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
zmj应助你好采纳,获得10
19秒前
October完成签到,获得积分10
19秒前
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532279
求助须知:如何正确求助?哪些是违规求助? 4621012
关于积分的说明 14576204
捐赠科研通 4560859
什么是DOI,文献DOI怎么找? 2498989
邀请新用户注册赠送积分活动 1478948
关于科研通互助平台的介绍 1450218