法拉第效率
阳极
锌
水溶液
电池(电)
电解质
阴极
电偶阳极
金属
材料科学
聚苯胺
无机化学
溶剂化
化学工程
工程类
化学
冶金
离子
阴极保护
电极
有机化学
聚合物
功率(物理)
物理化学
物理
量子力学
聚合
作者
Glenn Pastel,Travis P. Pollard,Qian Liu,Sydney N. Lavan,Qijia Zhu,Rongzhong Jiang,Lin Ma,Justin G. Connell,Oleg Borodin,Marshall A. Schroeder,Zhengcheng Zhang,Kang Xu
出处
期刊:Joule
[Elsevier BV]
日期:2024-02-28
卷期号:8 (4): 1050-1062
被引量:13
标识
DOI:10.1016/j.joule.2024.02.002
摘要
Recent efforts to improve zinc metal anode reversibility in aqueous electrolytes have primarily focused on tailoring Zn2+ solvation. We propose a complementary approach to directly engineer the anode interphase with the help of two co-cations. The designed organic co-cations offer distinct improvements: a partially fluorinated pyrrolidinium cation effectively suppresses parasitic reactions such as hydrogen evolution (<6 μA cm−2), while an ether-functionalized ammonium cation inhibits dendrite formation (almost 10 Ah cm−2 cumulative capacity, >1 year, Zn||Zn). Only 3 wt % of the co-cation combination enables full utilization of a 5-mAh cm−2 reservoir with over 99% Coulombic efficiency and 1,000 cycles with 20% reservoir utilization. We further validate this concept in Zn metal batteries with various cathode chemistries (O2, polyaniline, and HNaV6O16), and we have achieved significant enhancements in performance. This suggests co-cations are a promising and universal approach to improve metal anode reversibility across emerging battery chemistries.
科研通智能强力驱动
Strongly Powered by AbleSci AI