Development of a High-Resolution Integrated Emission Inventory of Air Pollutants for China

排放清单 污染物 中国 环境科学 空气污染物 高分辨率 分辨率(逻辑) 空气污染 计算机科学 遥感 地理 化学 考古 有机化学 人工智能
作者
Nanping Wu,Guannan Geng,Ruibo Xu,Shigan Liu,Xiaodong Liu,Qinren Shi,Ying Zhou,Yu Zhao,Huan Liu,Yu Shi,Junyu Zheng,Qiang Zhang
标识
DOI:10.5194/essd-2024-3
摘要

Abstract. Constructing a highly-resolved comprehensive emission dataset for China is challenging due to limited availability of refined information for parameters in a unified bottom-up framework. Here, by developing an integrated modeling framework, we harmonized multi-source heterogeneous data including several up-to-date emission inventories at national and regional scale, and for key species and sources in China, to generate a 0.1° resolution inventory for 2017. By source mapping, species mapping, temporal disaggregation, spatial allocation and spatial-temporal coupling, different emission inventories are normalized in terms of source categories, chemical species, and spatiotemporal resolutions. This achieves the coupling of multi-scale, high-resolution emission inventories with the MEIC (Multi-resolution Emission Inventory for China), forming a high-resolution INTegrated emission inventory of Air pollutants for China (i.e., INTAC). We find that the INTAC provides more accurate representations for emission magnitudes and spatiotemporal patterns. In 2017, China’s emissions of SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC, and OC are 12.3, 24.5, 141.0, 27.9, 9.2, 11.1, 8.4, 1.3 and 2.2 Tg, respectively. The proportion of point source emissions for SO2, PM10, NOx, PM2.5 increases from 7–19 % in MEIC to 48–66 % in INTAC, resulting in improved spatial accuracy, especially mitigating overestimations in densely populated areas. Compared to MEIC, INTAC reduced mean biases in simulated concentrations of major air pollutants by 2–14 μg/m³ across 74 cities against ground observations. The enhanced model performance by INTAC was particularly evident at finer grid resolutions. Our new dataset is accessible at https://doi.org/10.5281/zenodo.10459198 (Wu et al., 2024), and it will provide a solid data foundation for fine-scale atmospheric research and air quality improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实憨厚的二狗完成签到,获得积分20
刚刚
麦客完成签到,获得积分10
刚刚
IVY1300完成签到,获得积分10
刚刚
自洽完成签到,获得积分10
1秒前
浮游应助影儿采纳,获得10
1秒前
1秒前
Orange应助徐志豪采纳,获得10
2秒前
2秒前
飘逸翩跹完成签到,获得积分10
2秒前
仁爱誉完成签到,获得积分10
3秒前
3秒前
陈竞芬发布了新的文献求助10
3秒前
闪闪星星完成签到,获得积分10
4秒前
南宫应助小胡读研日记采纳,获得10
4秒前
齐齐完成签到 ,获得积分10
4秒前
Jasper应助开朗惊蛰采纳,获得10
5秒前
Jasper应助慈祥的鬼采纳,获得10
5秒前
5秒前
儒雅的山河完成签到 ,获得积分10
5秒前
Orange应助skf采纳,获得10
6秒前
猪猪hero发布了新的文献求助10
6秒前
Ava应助hans采纳,获得10
6秒前
王振123654完成签到,获得积分20
6秒前
25_1完成签到,获得积分10
7秒前
yatou完成签到,获得积分10
7秒前
7秒前
xi发布了新的文献求助10
7秒前
一棵草发布了新的文献求助20
7秒前
所所应助积极的邪欢采纳,获得10
7秒前
ClarkLee发布了新的文献求助30
8秒前
8秒前
希望天下0贩的0应助张阳采纳,获得10
8秒前
科研通AI6应助忧郁的灵枫采纳,获得20
8秒前
科研通AI6应助忧郁的灵枫采纳,获得10
9秒前
科研通AI6应助忧郁的灵枫采纳,获得10
9秒前
yoxi应助忧郁的灵枫采纳,获得200
9秒前
科研通AI6应助忧郁的灵枫采纳,获得10
9秒前
yoxi应助忧郁的灵枫采纳,获得100
9秒前
咕咕完成签到,获得积分10
9秒前
科研通AI6应助忧郁的灵枫采纳,获得200
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439377
求助须知:如何正确求助?哪些是违规求助? 4550536
关于积分的说明 14225071
捐赠科研通 4471548
什么是DOI,文献DOI怎么找? 2450403
邀请新用户注册赠送积分活动 1441270
关于科研通互助平台的介绍 1417882