Development of a High-Resolution Integrated Emission Inventory of Air Pollutants for China

排放清单 污染物 中国 环境科学 空气污染物 高分辨率 分辨率(逻辑) 空气污染 计算机科学 遥感 地理 化学 考古 有机化学 人工智能
作者
Nanping Wu,Guannan Geng,Ruibo Xu,Shigan Liu,Xiaodong Liu,Qinren Shi,Ying Zhou,Yu Zhao,Huan Liu,Yu Shi,Junyu Zheng,Qiang Zhang
标识
DOI:10.5194/essd-2024-3
摘要

Abstract. Constructing a highly-resolved comprehensive emission dataset for China is challenging due to limited availability of refined information for parameters in a unified bottom-up framework. Here, by developing an integrated modeling framework, we harmonized multi-source heterogeneous data including several up-to-date emission inventories at national and regional scale, and for key species and sources in China, to generate a 0.1° resolution inventory for 2017. By source mapping, species mapping, temporal disaggregation, spatial allocation and spatial-temporal coupling, different emission inventories are normalized in terms of source categories, chemical species, and spatiotemporal resolutions. This achieves the coupling of multi-scale, high-resolution emission inventories with the MEIC (Multi-resolution Emission Inventory for China), forming a high-resolution INTegrated emission inventory of Air pollutants for China (i.e., INTAC). We find that the INTAC provides more accurate representations for emission magnitudes and spatiotemporal patterns. In 2017, China’s emissions of SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC, and OC are 12.3, 24.5, 141.0, 27.9, 9.2, 11.1, 8.4, 1.3 and 2.2 Tg, respectively. The proportion of point source emissions for SO2, PM10, NOx, PM2.5 increases from 7–19 % in MEIC to 48–66 % in INTAC, resulting in improved spatial accuracy, especially mitigating overestimations in densely populated areas. Compared to MEIC, INTAC reduced mean biases in simulated concentrations of major air pollutants by 2–14 μg/m³ across 74 cities against ground observations. The enhanced model performance by INTAC was particularly evident at finer grid resolutions. Our new dataset is accessible at https://doi.org/10.5281/zenodo.10459198 (Wu et al., 2024), and it will provide a solid data foundation for fine-scale atmospheric research and air quality improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助小鱼采纳,获得10
1秒前
1秒前
枣点困糕完成签到,获得积分10
1秒前
2秒前
xiaostou完成签到,获得积分10
4秒前
阿百川完成签到,获得积分10
9秒前
huanhuan发布了新的文献求助10
10秒前
Pamg完成签到 ,获得积分10
10秒前
在水一方应助皮皮采纳,获得10
11秒前
11秒前
vanshaw.vs完成签到,获得积分10
11秒前
11秒前
cocolu应助科研通管家采纳,获得10
12秒前
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
南宫迎松应助科研通管家采纳,获得10
13秒前
子夕完成签到 ,获得积分10
14秒前
凶狠的期待完成签到,获得积分10
15秒前
Faith发布了新的文献求助10
15秒前
小鱼发布了新的文献求助10
16秒前
16秒前
Jenny发布了新的文献求助10
17秒前
傲娇皮皮虾完成签到 ,获得积分10
17秒前
17秒前
大模型应助cathy采纳,获得10
19秒前
19秒前
胡辣椒麻鸡完成签到,获得积分10
20秒前
21秒前
铲铲完成签到,获得积分10
22秒前
kk119完成签到,获得积分10
22秒前
wbhou完成签到 ,获得积分10
23秒前
噜噜噜噜噜完成签到,获得积分10
25秒前
-J.e-发布了新的文献求助10
25秒前
可爱的函函应助hxl123采纳,获得10
26秒前
27秒前
27秒前
27秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464245
求助须知:如何正确求助?哪些是违规求助? 3057540
关于积分的说明 9057583
捐赠科研通 2747637
什么是DOI,文献DOI怎么找? 1507432
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696083