Development of a High-Resolution Integrated Emission Inventory of Air Pollutants for China

排放清单 污染物 中国 环境科学 空气污染物 高分辨率 分辨率(逻辑) 空气污染 计算机科学 遥感 地理 化学 考古 有机化学 人工智能
作者
Nanping Wu,Guannan Geng,Ruibo Xu,Shigan Liu,Xiaodong Liu,Qinren Shi,Ying Zhou,Yu Zhao,Huan Liu,Yu Shi,Junyu Zheng,Qiang Zhang
标识
DOI:10.5194/essd-2024-3
摘要

Abstract. Constructing a highly-resolved comprehensive emission dataset for China is challenging due to limited availability of refined information for parameters in a unified bottom-up framework. Here, by developing an integrated modeling framework, we harmonized multi-source heterogeneous data including several up-to-date emission inventories at national and regional scale, and for key species and sources in China, to generate a 0.1° resolution inventory for 2017. By source mapping, species mapping, temporal disaggregation, spatial allocation and spatial-temporal coupling, different emission inventories are normalized in terms of source categories, chemical species, and spatiotemporal resolutions. This achieves the coupling of multi-scale, high-resolution emission inventories with the MEIC (Multi-resolution Emission Inventory for China), forming a high-resolution INTegrated emission inventory of Air pollutants for China (i.e., INTAC). We find that the INTAC provides more accurate representations for emission magnitudes and spatiotemporal patterns. In 2017, China’s emissions of SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC, and OC are 12.3, 24.5, 141.0, 27.9, 9.2, 11.1, 8.4, 1.3 and 2.2 Tg, respectively. The proportion of point source emissions for SO2, PM10, NOx, PM2.5 increases from 7–19 % in MEIC to 48–66 % in INTAC, resulting in improved spatial accuracy, especially mitigating overestimations in densely populated areas. Compared to MEIC, INTAC reduced mean biases in simulated concentrations of major air pollutants by 2–14 μg/m³ across 74 cities against ground observations. The enhanced model performance by INTAC was particularly evident at finer grid resolutions. Our new dataset is accessible at https://doi.org/10.5281/zenodo.10459198 (Wu et al., 2024), and it will provide a solid data foundation for fine-scale atmospheric research and air quality improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
田心发布了新的文献求助10
刚刚
努力向上的小刘完成签到,获得积分10
1秒前
鸟鸟鸟完成签到 ,获得积分10
1秒前
1秒前
阿拉哈哈笑完成签到,获得积分10
1秒前
周易完成签到,获得积分10
1秒前
wang发布了新的文献求助10
1秒前
参宿三完成签到 ,获得积分10
2秒前
lhy完成签到,获得积分10
2秒前
哒哒哒完成签到,获得积分10
2秒前
Lucas应助TangSEU采纳,获得10
2秒前
feijelly完成签到,获得积分10
2秒前
Lanmeiwei完成签到,获得积分10
3秒前
wtp关注了科研通微信公众号
3秒前
冷傲的如凡完成签到 ,获得积分10
3秒前
凤凰院凶真完成签到,获得积分10
3秒前
4秒前
4秒前
yuhui完成签到,获得积分10
4秒前
Isabel完成签到 ,获得积分10
5秒前
5秒前
ly666发布了新的文献求助10
6秒前
123发布了新的文献求助10
6秒前
爆米花完成签到,获得积分10
6秒前
6秒前
zzzxhhr完成签到,获得积分10
7秒前
CipherSage应助慈祥的丹寒采纳,获得10
7秒前
ask基本上完成签到 ,获得积分10
7秒前
Owen应助丢丢在吗采纳,获得10
7秒前
aben050361完成签到,获得积分10
7秒前
司空发布了新的文献求助10
8秒前
8秒前
小晚风完成签到,获得积分10
8秒前
7890733发布了新的文献求助10
8秒前
不安的从霜完成签到,获得积分10
9秒前
海盗船长完成签到,获得积分10
9秒前
9秒前
yang完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402308
求助须知:如何正确求助?哪些是违规求助? 4520855
关于积分的说明 14082461
捐赠科研通 4434876
什么是DOI,文献DOI怎么找? 2434481
邀请新用户注册赠送积分活动 1426661
关于科研通互助平台的介绍 1405415