Development of a High-Resolution Integrated Emission Inventory of Air Pollutants for China

排放清单 污染物 中国 环境科学 空气污染物 高分辨率 分辨率(逻辑) 空气污染 计算机科学 遥感 地理 化学 考古 人工智能 有机化学
作者
Nanping Wu,Guannan Geng,Ruibo Xu,Shigan Liu,Xiaodong Liu,Qinren Shi,Ying Zhou,Yu Zhao,Huan Liu,Yu Shi,Junyu Zheng,Qiang Zhang
标识
DOI:10.5194/essd-2024-3
摘要

Abstract. Constructing a highly-resolved comprehensive emission dataset for China is challenging due to limited availability of refined information for parameters in a unified bottom-up framework. Here, by developing an integrated modeling framework, we harmonized multi-source heterogeneous data including several up-to-date emission inventories at national and regional scale, and for key species and sources in China, to generate a 0.1° resolution inventory for 2017. By source mapping, species mapping, temporal disaggregation, spatial allocation and spatial-temporal coupling, different emission inventories are normalized in terms of source categories, chemical species, and spatiotemporal resolutions. This achieves the coupling of multi-scale, high-resolution emission inventories with the MEIC (Multi-resolution Emission Inventory for China), forming a high-resolution INTegrated emission inventory of Air pollutants for China (i.e., INTAC). We find that the INTAC provides more accurate representations for emission magnitudes and spatiotemporal patterns. In 2017, China’s emissions of SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC, and OC are 12.3, 24.5, 141.0, 27.9, 9.2, 11.1, 8.4, 1.3 and 2.2 Tg, respectively. The proportion of point source emissions for SO2, PM10, NOx, PM2.5 increases from 7–19 % in MEIC to 48–66 % in INTAC, resulting in improved spatial accuracy, especially mitigating overestimations in densely populated areas. Compared to MEIC, INTAC reduced mean biases in simulated concentrations of major air pollutants by 2–14 μg/m³ across 74 cities against ground observations. The enhanced model performance by INTAC was particularly evident at finer grid resolutions. Our new dataset is accessible at https://doi.org/10.5281/zenodo.10459198 (Wu et al., 2024), and it will provide a solid data foundation for fine-scale atmospheric research and air quality improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yoki完成签到,获得积分10
2秒前
H丶化羽发布了新的文献求助20
2秒前
kkvv发布了新的文献求助10
2秒前
2秒前
梦华完成签到 ,获得积分10
3秒前
xxxzy完成签到,获得积分10
3秒前
FSY关注了科研通微信公众号
3秒前
lgq12697应助GamePlayer采纳,获得10
3秒前
lgq12697应助GamePlayer采纳,获得10
3秒前
小邸应助GamePlayer采纳,获得10
3秒前
爆米花应助GamePlayer采纳,获得10
3秒前
充电宝应助GamePlayer采纳,获得10
3秒前
chenjun7080发布了新的文献求助10
4秒前
深情安青应助GamePlayer采纳,获得10
4秒前
小邸应助GamePlayer采纳,获得10
4秒前
Fran07完成签到,获得积分10
4秒前
小二郎应助田田田采纳,获得10
4秒前
搜集达人应助GamePlayer采纳,获得10
4秒前
4秒前
ww发布了新的文献求助10
5秒前
小桐维尼发布了新的文献求助10
5秒前
Lukomere发布了新的文献求助10
5秒前
浮游应助知性的问筠采纳,获得10
6秒前
6秒前
田様应助Lignin采纳,获得10
7秒前
Catalina_S应助Fran07采纳,获得10
7秒前
晨曦应助星期天采纳,获得10
8秒前
科研通AI2S应助收声采纳,获得10
8秒前
mahaha发布了新的文献求助10
8秒前
专注的傲白完成签到,获得积分20
9秒前
9秒前
天天快乐应助New采纳,获得10
10秒前
慕青应助庾稀采纳,获得10
10秒前
云淡风轻发布了新的文献求助10
10秒前
老驴拉磨完成签到 ,获得积分10
10秒前
11秒前
实验顺顺顺完成签到,获得积分10
11秒前
Hushluo发布了新的文献求助10
11秒前
NexusExplorer应助my采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4560243
求助须知:如何正确求助?哪些是违规求助? 3986532
关于积分的说明 12342828
捐赠科研通 3657137
什么是DOI,文献DOI怎么找? 2014731
邀请新用户注册赠送积分活动 1049596
科研通“疑难数据库(出版商)”最低求助积分说明 937803