GNNCL: A Graph Neural Network Recommendation Model Based on Contrastive Learning

计算智能 计算机科学 图形 人工智能 人工神经网络 复杂系统 机器学习 理论计算机科学
作者
Jinguang Chen,Jiahe Zhou,Lili Ma
出处
期刊:Neural Processing Letters [Springer Nature]
卷期号:56 (2) 被引量:2
标识
DOI:10.1007/s11063-024-11545-9
摘要

Abstract In the field of recommendation algorithms, the representation learning for users and items has evolved from using single IDs or historical interactions to utilizing higher-order neighbors. This can be achieved by modeling the user–item interaction graph to capture user preferences for items. Despite the promising results achieved by these algorithms, they still suffer from the issue of data sparsity. In order to mitigate the impact of data sparsity, contrastive learning has been adopted in graph collaborative filtering to enhance performance. However, current recommendation algorithms using contrastive learning yield uneven representations after data augmentation and do not consider the potential relationships among users (or items). To address these challenges, we propose a graph neural network-based recommendation model that integrates contrastive learning (GNNCL). This model combines data augmentation with added noise and the exploration of semantic neighbors for nodes. For the structural neighbors on the interaction graph, we introduce a novel and straightforward contrastive learning approach, abandoning previous graph augmentation methods, and introducing uniform noise into the embedding space to create contrastive views. To unearth potential semantic neighbor relationships in the semantic space, we assume that users with similar representations possess semantic neighbor relationships and merge these semantic neighbors into the prototype contrastive learning. We utilize a clustering algorithm to obtain prototypes for users and items and employ the EM algorithm for prototype contrastive learning. Experimental results validate the effectiveness of our approach. Particularly, on the Yelp2018 and Amazon-book datasets, our method exhibits significant performance improvements compared to basic graph collaborative filtering models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哈哈哈哈完成签到,获得积分10
1秒前
沧海泪发布了新的文献求助10
2秒前
小胡先森应助凤凰山采纳,获得10
2秒前
一一完成签到,获得积分10
2秒前
惠惠发布了新的文献求助10
2秒前
shotgod完成签到,获得积分20
3秒前
科研通AI5应助蕾子采纳,获得10
3秒前
happy杨完成签到 ,获得积分10
3秒前
lichaoyes发布了新的文献求助10
3秒前
3秒前
Owen应助通~采纳,获得10
3秒前
封闭货车发布了新的文献求助10
4秒前
4秒前
www发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
shotgod发布了新的文献求助10
6秒前
ling玲完成签到,获得积分10
6秒前
奔奔发布了新的文献求助10
6秒前
SweepingMonk应助虚心盼晴采纳,获得10
7秒前
8秒前
汉堡包应助XXF采纳,获得10
8秒前
wzh完成签到,获得积分10
8秒前
海底落日完成签到,获得积分20
8秒前
9秒前
科研通AI5应助123采纳,获得30
9秒前
烟花应助pi采纳,获得10
10秒前
汉堡包应助小木木壮采纳,获得10
10秒前
10秒前
yl发布了新的文献求助30
10秒前
菲菲呀发布了新的文献求助10
10秒前
10秒前
科研通AI5应助禾泽采纳,获得30
11秒前
坚强的樱发布了新的文献求助10
11秒前
英俊梦槐完成签到,获得积分10
11秒前
123发布了新的文献求助10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794