GNNCL: A Graph Neural Network Recommendation Model Based on Contrastive Learning

计算智能 计算机科学 图形 人工智能 人工神经网络 复杂系统 机器学习 理论计算机科学
作者
Jinguang Chen,Jiahe Zhou,Lili Ma
出处
期刊:Neural Processing Letters [Springer Science+Business Media]
卷期号:56 (2) 被引量:2
标识
DOI:10.1007/s11063-024-11545-9
摘要

Abstract In the field of recommendation algorithms, the representation learning for users and items has evolved from using single IDs or historical interactions to utilizing higher-order neighbors. This can be achieved by modeling the user–item interaction graph to capture user preferences for items. Despite the promising results achieved by these algorithms, they still suffer from the issue of data sparsity. In order to mitigate the impact of data sparsity, contrastive learning has been adopted in graph collaborative filtering to enhance performance. However, current recommendation algorithms using contrastive learning yield uneven representations after data augmentation and do not consider the potential relationships among users (or items). To address these challenges, we propose a graph neural network-based recommendation model that integrates contrastive learning (GNNCL). This model combines data augmentation with added noise and the exploration of semantic neighbors for nodes. For the structural neighbors on the interaction graph, we introduce a novel and straightforward contrastive learning approach, abandoning previous graph augmentation methods, and introducing uniform noise into the embedding space to create contrastive views. To unearth potential semantic neighbor relationships in the semantic space, we assume that users with similar representations possess semantic neighbor relationships and merge these semantic neighbors into the prototype contrastive learning. We utilize a clustering algorithm to obtain prototypes for users and items and employ the EM algorithm for prototype contrastive learning. Experimental results validate the effectiveness of our approach. Particularly, on the Yelp2018 and Amazon-book datasets, our method exhibits significant performance improvements compared to basic graph collaborative filtering models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Oliver完成签到 ,获得积分10
1秒前
xiaogao要读博完成签到,获得积分10
2秒前
Hello应助念姬采纳,获得10
4秒前
科研圣体发布了新的文献求助10
7秒前
7秒前
8秒前
所所应助细心的恋风采纳,获得10
9秒前
JamesPei应助姽稚采纳,获得10
10秒前
Xieyusen发布了新的文献求助10
12秒前
浮生完成签到 ,获得积分10
13秒前
14秒前
是的发放发布了新的文献求助10
15秒前
小马甲应助王佳豪采纳,获得10
16秒前
17秒前
19秒前
22秒前
23秒前
23秒前
义气的亦寒完成签到,获得积分10
24秒前
25秒前
吴晨曦完成签到,获得积分10
25秒前
Lynne完成签到,获得积分10
25秒前
彭于晏应助佳啊采纳,获得10
26秒前
是的发放完成签到,获得积分10
27秒前
LXY完成签到,获得积分10
27秒前
王佳豪发布了新的文献求助10
28秒前
28秒前
28秒前
月亮门儿完成签到 ,获得积分10
32秒前
哦哟发布了新的文献求助10
32秒前
exosome完成签到,获得积分10
34秒前
zby完成签到,获得积分10
35秒前
HJJHJH发布了新的文献求助50
39秒前
39秒前
wang11发布了新的文献求助10
40秒前
40秒前
小马甲应助xiaokk采纳,获得10
41秒前
爆米花应助Foldog采纳,获得10
43秒前
simiger完成签到,获得积分10
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966989
求助须知:如何正确求助?哪些是违规求助? 3512429
关于积分的说明 11163148
捐赠科研通 3247241
什么是DOI,文献DOI怎么找? 1793778
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432