GNNCL: A Graph Neural Network Recommendation Model Based on Contrastive Learning

计算智能 计算机科学 图形 人工智能 人工神经网络 复杂系统 机器学习 理论计算机科学
作者
Jinguang Chen,Jiahe Zhou,Lili Ma
出处
期刊:Neural Processing Letters [Springer Science+Business Media]
卷期号:56 (2) 被引量:2
标识
DOI:10.1007/s11063-024-11545-9
摘要

Abstract In the field of recommendation algorithms, the representation learning for users and items has evolved from using single IDs or historical interactions to utilizing higher-order neighbors. This can be achieved by modeling the user–item interaction graph to capture user preferences for items. Despite the promising results achieved by these algorithms, they still suffer from the issue of data sparsity. In order to mitigate the impact of data sparsity, contrastive learning has been adopted in graph collaborative filtering to enhance performance. However, current recommendation algorithms using contrastive learning yield uneven representations after data augmentation and do not consider the potential relationships among users (or items). To address these challenges, we propose a graph neural network-based recommendation model that integrates contrastive learning (GNNCL). This model combines data augmentation with added noise and the exploration of semantic neighbors for nodes. For the structural neighbors on the interaction graph, we introduce a novel and straightforward contrastive learning approach, abandoning previous graph augmentation methods, and introducing uniform noise into the embedding space to create contrastive views. To unearth potential semantic neighbor relationships in the semantic space, we assume that users with similar representations possess semantic neighbor relationships and merge these semantic neighbors into the prototype contrastive learning. We utilize a clustering algorithm to obtain prototypes for users and items and employ the EM algorithm for prototype contrastive learning. Experimental results validate the effectiveness of our approach. Particularly, on the Yelp2018 and Amazon-book datasets, our method exhibits significant performance improvements compared to basic graph collaborative filtering models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小章完成签到,获得积分10
2秒前
shihangZhang完成签到,获得积分10
2秒前
共享精神应助涵泽采纳,获得10
2秒前
hansJAMA发布了新的文献求助10
5秒前
焱垚发布了新的文献求助10
5秒前
yw发布了新的文献求助10
6秒前
Gengar完成签到 ,获得积分10
6秒前
无花果应助goldNAN采纳,获得10
6秒前
7秒前
lu完成签到,获得积分10
7秒前
怕孤独的青柏完成签到,获得积分10
7秒前
先一完成签到 ,获得积分10
8秒前
8秒前
lu发布了新的文献求助10
11秒前
11秒前
Jasper应助自由囧采纳,获得10
12秒前
Hh完成签到,获得积分10
14秒前
在水一方应助hansJAMA采纳,获得10
14秒前
顾矜应助墨尔根戴青采纳,获得10
14秒前
王小西发布了新的文献求助10
16秒前
涵泽发布了新的文献求助10
16秒前
17秒前
bkagyin应助Gray采纳,获得10
18秒前
ele_yuki完成签到,获得积分10
19秒前
跑快点完成签到,获得积分10
19秒前
19秒前
19秒前
evergarden发布了新的文献求助20
20秒前
20秒前
Vv发布了新的文献求助10
21秒前
想要发文完成签到,获得积分10
21秒前
22秒前
科研通AI5应助chen采纳,获得10
23秒前
hxl完成签到 ,获得积分10
24秒前
24秒前
FFly完成签到,获得积分10
25秒前
江宿发布了新的文献求助10
26秒前
26秒前
光亮静槐发布了新的文献求助10
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842873
求助须知:如何正确求助?哪些是违规求助? 3384852
关于积分的说明 10537856
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710311
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149