作者
Sarah Lindner,Oriana Miltiadous,Rúben J. Ramos,Jenny Paredes,Anastasia I. Kousa,Anqi Dai,Teng Fei,Emma Lauder,J W Frame,Nicholas R. Waters,Keimya Sadeghi,Gabriel K. Armijo,Romina Ghale,Kristen Victor,Brianna Gipson,Sébastien Monette,Marco Russo,Chi L. Nguyen,John Slingerland,Ying Taur,Kate A. Markey,Hana Andrlová,Sergio Giralt,Miguel‐Angel Perales,Pavan Reddy,Jonathan U. Peled,Melody Smith,Justin R. Cross,Marina Burgos da Silva,Clarissa Campbell,Marcel R.M. van den Brink
摘要
Microbial transformation of bile acids affects intestinal immune homoeostasis but its impact on inflammatory pathologies remains largely unknown. Using a mouse model of graft-versus-host disease (GVHD), we found that T cell-driven inflammation decreased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and reduced the levels of unconjugated and microbe-derived bile acids. Several microbe-derived bile acids attenuated farnesoid X receptor (FXR) activation, suggesting that loss of these metabolites during inflammation may increase FXR activity and exacerbate the course of disease. Indeed, mortality increased with pharmacological activation of FXR and decreased with its genetic ablation in donor T cells during mouse GVHD. Furthermore, patients with GVHD after allogeneic hematopoietic cell transplantation showed similar loss of BSH and the associated reduction in unconjugated and microbe-derived bile acids. In addition, the FXR antagonist ursodeoxycholic acid reduced the proliferation of human T cells and was associated with a lower risk of GVHD-related mortality in patients. We propose that dysbiosis and loss of microbe-derived bile acids during inflammation may be an important mechanism to amplify T cell-mediated diseases. Graft-versus-host disease, a T cell-driven inflammatory condition, is associated with altered microbial bile acid metabolism in both mice and humans and this is linked to outcomes.