Advances in reactive co-precipitation technology for preparing high-performance cathodes

结晶 材料科学 活性材料 降水 锂(药物) 阴极 化学工程 制作 纳米技术 化学 冶金 医学 物理 替代医学 物理化学 病理 气象学 工程类 内分泌学
作者
Zhenzhen Wang,Yang Li,Chunliu Xu,Jingcai Cheng,Junmei Zhao,Qingshan Huang,Chao Yang
标识
DOI:10.1016/j.greenca.2023.12.001
摘要

Reactive crystallization plays an essential role in the synthesis of high-quality precursors with a narrow particle size distribution, dense packing, and high sphericity. These features are beneficial in the fabrication of high-specific-capacity and long-cycle-life cathodes for lithium-ion and sodium-ion batteries. However, in industrial production, designing and scaling-up crystallizers involves the use of semi-empirical approaches, making it challenging to satisfactorily meet techno-economic requirements. Furthermore, there is still a lack of in-depth knowledge on the theoretical models and technical calculations of the current co-precipitation process. This review elaborates on critical advances in the theoretical guidelines and process regulation strategies using a reactive crystallizer for the preparation of precursors by co-precipitation. The research progress on the kinetic models of co-precipitation reactive crystallization is presented. In addition, the regulation strategies for the reactive crystallization process of lithium-ion ternary cathodes are described in detail. These include the influence of different reactive crystallizer structures on the precursor's morphology and performance, the intelligent online measurement of efficient reactive crystallizers to ensure favorable conditions of co-precipitation, and preparing the precursor with a high tap density by increasing its solid holdup. A controllable reactive crystallization process is described in terms of the structural design with concentration gradient materials and bulk gradient doping of advantageous elements (such as magnesium ion) in lithium-ion cathodes and the fabrication of sodium-ion cathodes with three typical materials—Prussian blue analogues, transition metal oxides, and polyanionic phosphate compounds being involved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sjj完成签到,获得积分10
1秒前
只道寻常发布了新的文献求助10
1秒前
灵巧坤完成签到,获得积分20
2秒前
澹台灭明完成签到,获得积分10
2秒前
含蓄的鹤发布了新的文献求助10
2秒前
K. G.完成签到,获得积分0
2秒前
张云雷的大闸蟹完成签到,获得积分20
2秒前
2秒前
3秒前
4秒前
化学狗完成签到,获得积分10
4秒前
yud完成签到 ,获得积分10
4秒前
5秒前
拼搏思卉发布了新的文献求助10
5秒前
6秒前
雨碎寒江完成签到,获得积分10
6秒前
7秒前
会飞的木头完成签到,获得积分10
7秒前
雪白涵山发布了新的文献求助20
7秒前
shouyu29应助MADKAI采纳,获得10
7秒前
Seiswan发布了新的文献求助10
7秒前
小小菜鸟完成签到,获得积分10
8秒前
8秒前
西西弗斯完成签到,获得积分10
8秒前
KT2440完成签到,获得积分10
9秒前
顾阿秀发布了新的文献求助10
9秒前
9秒前
9秒前
gnr2000完成签到,获得积分0
9秒前
10秒前
10秒前
BareBear应助赖道之采纳,获得10
10秒前
LEMON完成签到,获得积分10
10秒前
Ava应助buuyoo采纳,获得10
11秒前
情怀应助liuwei采纳,获得10
11秒前
aaefv完成签到,获得积分10
11秒前
小小菜鸟发布了新的文献求助10
11秒前
深情安青应助123采纳,获得10
11秒前
赫初晴完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762