已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification of IDH and TERTp mutations using dynamic susceptibility contrast MRI with deep learning in 162 gliomas

医学 鉴定(生物学) 对比度(视觉) 胶质瘤 磁共振成像 动态增强MRI 计算生物学 放射科 癌症研究 人工智能 生物 植物 计算机科学
作者
Buse Buz-Yalug,Gülce Turhan,Ayşe İrem Çetin,Sukru Samet Dindar,Ayça Erşen Danyeli,Cengiz Yakıcıer,M. Necmettin Pamir,Koray Özduman,Alp Di̇nçer,Esin Öztürk-Işık
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:170: 111257-111257 被引量:5
标识
DOI:10.1016/j.ejrad.2023.111257
摘要

PurposeIsocitrate dehydrogenase (IDH) and telomerase reverse transcriptase gene promoter (TERTp) mutations play crucial roles in glioma biology. Such genetic information is typically obtained invasively from excised tumor tissue; however, these mutations need to be identified preoperatively for better treatment planning. The relative cerebral blood volume (rCBV) information derived from dynamic susceptibility contrast MRI (DSC-MRI) has been demonstrated to correlate with tumor vascularity, functionality, and biology, and might provide some information about the genetic alterations in gliomas before surgery. Therefore, this study aims to predict IDH and TERTp mutational subgroups in gliomas using deep learning applied to rCBV images.MethodAfter the generation of rCBV images from DSC-MRI data, classical machine learning algorithms were applied to the features obtained from the segmented tumor volumes to classify IDH and TERTp mutation subgroups. Furthermore, pre-trained convolutional neural networks (CNNs) and CNNs enhanced with attention gates were trained using rCBV images or a combination of rCBV and anatomical images to classify the mutational subgroups.ResultsThe best accuracies obtained with classical machine learning algorithms were 83 %, 68 %, and 76 % for the identification of IDH mutational, TERTp mutational, and TERTp-only subgroups, respectively. On the other hand, the best-performing CNN model achieved 88 % accuracy (86 % sensitivity, 91 % specificity) for the IDH-mutational subgroups, 70 % accuracy (73 % sensitivity and 67 % specificity) for the TERTp-mutational subgroups, and 84 % accuracy (86 % sensitivity, 81 % specificity) for the TERTp-only subgroup using attention gates.ConclusionsDSC-MRI can be utilized to noninvasively classify IDH- and TERTp-based molecular subgroups of gliomas, facilitating preoperative identification of these genetic alterations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈xt发布了新的文献求助10
刚刚
刚刚
2秒前
BASS发布了新的文献求助10
5秒前
5秒前
ick558完成签到,获得积分10
7秒前
HEATHERJJ发布了新的文献求助10
8秒前
xiaochen发布了新的文献求助10
10秒前
迟大猫应助3137874883采纳,获得10
11秒前
头秃的阿吉完成签到,获得积分10
12秒前
13秒前
酷波er应助纯真的坤采纳,获得10
14秒前
huanhuan完成签到 ,获得积分10
14秒前
lvsehx发布了新的文献求助10
15秒前
Cynthia发布了新的文献求助10
17秒前
18秒前
小巧的满天完成签到,获得积分10
20秒前
完美世界应助lvsehx采纳,获得10
22秒前
22秒前
22秒前
23秒前
23秒前
23秒前
貔貅完成签到,获得积分10
24秒前
5160发布了新的文献求助30
25秒前
科研通AI5应助kaka采纳,获得10
27秒前
28秒前
29秒前
29秒前
Lucas应助Cynthia采纳,获得10
33秒前
zmx发布了新的文献求助30
35秒前
36秒前
FashionBoy应助李善聪采纳,获得10
37秒前
易海之旅发布了新的文献求助10
38秒前
38秒前
李爱国应助健忘的寄瑶采纳,获得10
39秒前
llnysl完成签到 ,获得积分10
39秒前
flow完成签到 ,获得积分10
41秒前
小巧的满天关注了科研通微信公众号
41秒前
lvsehx发布了新的文献求助10
43秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538813
求助须知:如何正确求助?哪些是违规求助? 3116509
关于积分的说明 9325620
捐赠科研通 2814416
什么是DOI,文献DOI怎么找? 1546658
邀请新用户注册赠送积分活动 720659
科研通“疑难数据库(出版商)”最低求助积分说明 712136