A Target-Aware Well Path Control Method Based on Transfer Reinforcement Learning

计算机科学 强化学习 弹道 过程(计算) 路径(计算) 学习迁移 人工智能 物理 天文 程序设计语言 操作系统
作者
Zhu Dandan,Qiuhan Xu,Fei Wang,Dong Chen,Zhihui Ye,Hao Zhou,Ke Zhang
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:29 (04): 1730-1741 被引量:3
标识
DOI:10.2118/218409-pa
摘要

Summary In the actual construction process, well path control is a challenging task mainly due to the inevitable well deflection caused by geological factors, drilling tools as well as borehole enlargement. Most conventional well path control methods focus on elaborate mechanism model construction. The methods are typically constructed on the basis of certain constraints or assumptions, which reflect their limited ability to accurately capture the actual drilling process, low level of intelligence, poor anti-interference performance, and weak adaptive capacity. To address these challenges, this paper proposes a target-aware well path control method that integrates reinforcement learning and transfer learning. The proposed method employs a deep deterministic policy gradient model based on the prioritized experience replay mechanism and leverages transfer learning to accelerate model learning. This enables the construction of a target-aware well path adaptive control system with strong anti-interference capability. The proposed target-aware control method of well path based on reinforcement learning and transfer learning can accurately track the preset trajectory in diverse geological environments, reach the target area with high precision, and make reasonable trajectory optimization decisions with measurement while drilling (MWD) even when the target trajectory does not match the actual distribution of the reservoir. This approach exhibits excellent anti-interference and adaptive abilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慕容博发布了新的文献求助10
1秒前
彩虹大侠完成签到,获得积分10
2秒前
bkagyin应助sun采纳,获得10
3秒前
xudanhong发布了新的文献求助50
6秒前
爆米花应助小马同学采纳,获得10
6秒前
猪猪hero应助铭心采纳,获得10
7秒前
JG完成签到 ,获得积分10
7秒前
8秒前
赘婿应助unique444采纳,获得10
9秒前
小二郎应助xusuizi采纳,获得10
9秒前
小彭友完成签到,获得积分10
10秒前
打打应助新星采纳,获得10
13秒前
来杯姜茶完成签到 ,获得积分10
14秒前
超级的花卷完成签到,获得积分10
15秒前
JamesPei应助研友_5Zl9D8采纳,获得10
15秒前
16秒前
FashionBoy应助01259采纳,获得10
17秒前
wengjc92完成签到,获得积分10
17秒前
18秒前
响什么捏应助年轻时光采纳,获得10
20秒前
unique444发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
妥妥酱完成签到,获得积分10
25秒前
LBQ完成签到,获得积分10
26秒前
28秒前
id发布了新的文献求助10
29秒前
无名完成签到,获得积分10
29秒前
30秒前
落星完成签到,获得积分10
30秒前
白梅发布了新的文献求助10
31秒前
小啵招糕完成签到 ,获得积分10
31秒前
echoxq完成签到,获得积分10
32秒前
慕青应助淡淡夕阳采纳,获得10
32秒前
bbczj发布了新的文献求助10
33秒前
Viola完成签到,获得积分10
35秒前
37秒前
echoxq发布了新的文献求助10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966114
求助须知:如何正确求助?哪些是违规求助? 3511490
关于积分的说明 11158539
捐赠科研通 3246107
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324