Incorporating eco-evolutionary information into species distribution models provides comprehensive predictions of species range shifts under climate change

生态位 利基 种内竞争 物种分布 航程(航空) 环境生态位模型 生物 生态学 气候变化 谱系(遗传) 物种复合体 生态位分离 生态位分化 生态系统 生物多样性 系统发育树 栖息地 生物化学 材料科学 基因 复合材料
作者
Wen‐Xun Lu,Zi‐Zhao Wang,Xueying Hu,Guang‐Yuan Rao
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:912: 169501-169501 被引量:10
标识
DOI:10.1016/j.scitotenv.2023.169501
摘要

As climate changes increasingly influence species distributions, ecosystem functions, and biodiversity, the urgency to understand how species' ranges shift under those changes is great. Species distribution models (SDMs) are vital approaches that can predict species distributions under changing climates. However, SDMs based on the species' current occurrences may underestimate the species' climatic tolerances. Integrating species' realized niches at different periods, also known as multi-temporal calibration, can provide an estimation closer to its fundamental niche. Based on this, we further proposed an integrated framework that combines eco-evolutionary data and SDMs (phylogenetically-informed SDMs) to provide comprehensive predictions of species range shifts under climate change. To evaluate our approach's performance, we applied it to a group of related species, the Chrysanthemum zawadskii species complex (Anthemidae, Asteracee). First, we investigated the niche differentiation between species and intraspecific lineages of the complex and estimated their rates of niche evolution. Next, using both standard SDMs and our phylogenetically-informed SDMs, we generated predictions of suitability areas for all species and lineages and compared the results. Finally, we reconstructed the historical range dynamics for the species of this complex. Our results showed that the species and intraspecific lineages of the complex had varying degrees of niche differentiation and different rates of niche evolution. Lineage-level SDMs can provide more realistic predictions for species with intraspecific differentiation than species-level models can. The phylogenetically-informed SDMs provided more complete environmental envelopes and predicted broader potential distributions for all species than the standard SDMs did. Range dynamics varied among the species that have different rates of niche evolution. Our framework integrating eco-evolutionary data and SDMs contributes to a better understanding of the species' responses to climate change and can help to make more targeted conservation efforts for the target species under climate change, particularly for rare species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
之逸完成签到,获得积分10
1秒前
Anthony完成签到,获得积分20
1秒前
1秒前
sasa完成签到,获得积分10
2秒前
2秒前
SHAO应助Ice采纳,获得10
2秒前
stillqq完成签到,获得积分10
3秒前
ppzz1220完成签到,获得积分10
3秒前
3秒前
hai发布了新的文献求助10
3秒前
lan发布了新的文献求助10
4秒前
4秒前
4秒前
CodeCraft应助sdniuidifod采纳,获得10
4秒前
东方发布了新的文献求助10
5秒前
lcl发布了新的文献求助15
5秒前
lwh发布了新的文献求助10
5秒前
Z-先森完成签到,获得积分10
5秒前
大胆妙竹发布了新的文献求助10
6秒前
李健应助王多鱼采纳,获得30
6秒前
wu8577应助nxxxxxxxxxx采纳,获得10
6秒前
7秒前
禾安应助橘子猫采纳,获得10
7秒前
充电宝应助老衲采纳,获得10
7秒前
zeo完成签到,获得积分10
8秒前
包子完成签到,获得积分10
8秒前
LXX-k发布了新的文献求助10
8秒前
XX完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
研友_85YNe8发布了新的文献求助10
9秒前
HZC发布了新的文献求助10
10秒前
海北完成签到 ,获得积分10
10秒前
星辰大海应助木头采纳,获得10
10秒前
爱喝冰可乐完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958563
求助须知:如何正确求助?哪些是违规求助? 3504871
关于积分的说明 11120709
捐赠科研通 3236153
什么是DOI,文献DOI怎么找? 1788666
邀请新用户注册赠送积分活动 871279
科研通“疑难数据库(出版商)”最低求助积分说明 802646