亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Incorporating eco-evolutionary information into species distribution models provides comprehensive predictions of species range shifts under climate change

生态位 利基 种内竞争 物种分布 航程(航空) 环境生态位模型 生物 生态学 气候变化 谱系(遗传) 物种复合体 生态位分离 生态位分化 生态系统 生物多样性 系统发育树 栖息地 生物化学 材料科学 基因 复合材料
作者
Wen‐Xun Lu,Zi‐Zhao Wang,Xueying Hu,Guang‐Yuan Rao
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:912: 169501-169501 被引量:10
标识
DOI:10.1016/j.scitotenv.2023.169501
摘要

As climate changes increasingly influence species distributions, ecosystem functions, and biodiversity, the urgency to understand how species' ranges shift under those changes is great. Species distribution models (SDMs) are vital approaches that can predict species distributions under changing climates. However, SDMs based on the species' current occurrences may underestimate the species' climatic tolerances. Integrating species' realized niches at different periods, also known as multi-temporal calibration, can provide an estimation closer to its fundamental niche. Based on this, we further proposed an integrated framework that combines eco-evolutionary data and SDMs (phylogenetically-informed SDMs) to provide comprehensive predictions of species range shifts under climate change. To evaluate our approach's performance, we applied it to a group of related species, the Chrysanthemum zawadskii species complex (Anthemidae, Asteracee). First, we investigated the niche differentiation between species and intraspecific lineages of the complex and estimated their rates of niche evolution. Next, using both standard SDMs and our phylogenetically-informed SDMs, we generated predictions of suitability areas for all species and lineages and compared the results. Finally, we reconstructed the historical range dynamics for the species of this complex. Our results showed that the species and intraspecific lineages of the complex had varying degrees of niche differentiation and different rates of niche evolution. Lineage-level SDMs can provide more realistic predictions for species with intraspecific differentiation than species-level models can. The phylogenetically-informed SDMs provided more complete environmental envelopes and predicted broader potential distributions for all species than the standard SDMs did. Range dynamics varied among the species that have different rates of niche evolution. Our framework integrating eco-evolutionary data and SDMs contributes to a better understanding of the species' responses to climate change and can help to make more targeted conservation efforts for the target species under climate change, particularly for rare species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
wrl2023发布了新的文献求助10
20秒前
JamesPei应助科研通管家采纳,获得10
23秒前
23秒前
wrl2023完成签到,获得积分10
28秒前
老广发布了新的文献求助10
34秒前
40秒前
1分钟前
charih完成签到 ,获得积分10
1分钟前
xiaolang2004完成签到,获得积分10
2分钟前
2分钟前
2分钟前
LJL完成签到 ,获得积分10
2分钟前
2分钟前
luyao发布了新的文献求助10
2分钟前
YZChen完成签到,获得积分10
3分钟前
千早爱音完成签到,获得积分10
3分钟前
领导范儿应助可爱丹彤采纳,获得10
3分钟前
3分钟前
可爱丹彤发布了新的文献求助10
3分钟前
jin发布了新的文献求助10
3分钟前
3分钟前
3分钟前
boluohu发布了新的文献求助10
3分钟前
jin完成签到,获得积分10
3分钟前
情怀应助jin采纳,获得10
4分钟前
boluohu完成签到,获得积分10
4分钟前
冬日暖阳完成签到 ,获得积分10
4分钟前
威武灵阳完成签到,获得积分10
4分钟前
千早爱音应助科研通管家采纳,获得20
4分钟前
4分钟前
luyao完成签到,获得积分10
4分钟前
Gabriel发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
MchemG应助Gabriel采纳,获得10
5分钟前
5分钟前
bobo完成签到,获得积分10
5分钟前
情怀应助sun采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302615
求助须知:如何正确求助?哪些是违规求助? 4449726
关于积分的说明 13848652
捐赠科研通 4335991
什么是DOI,文献DOI怎么找? 2380709
邀请新用户注册赠送积分活动 1375671
关于科研通互助平台的介绍 1341998