Machine Learning Models and Technologies for Evidence-Based Telehealth and Smart Care: A Review

远程医疗 计算机科学 医学 远程医疗 医疗保健 经济增长 经济
作者
Stella C. Christopoulou
出处
期刊:BioMedInformatics [MDPI AG]
卷期号:4 (1): 754-779 被引量:1
标识
DOI:10.3390/biomedinformatics4010042
摘要

Background: Over the past few years, clinical studies have utilized machine learning in telehealth and smart care for disease management, self-management, and managing health issues like pulmonary diseases, heart failure, diabetes screening, and intraoperative risks. However, a systematic review of machine learning’s use in evidence-based telehealth and smart care is lacking, as evidence-based practice aims to eliminate biases and subjective opinions. Methods: The author conducted a mixed methods review to explore machine learning applications in evidence-based telehealth and smart care. A systematic search of the literature was performed during 16 June 2023–27 June 2023 in Google Scholar, PubMed, and the clinical registry platform ClinicalTrials.gov. The author included articles in the review if they were implemented by evidence-based health informatics and concerned with telehealth and smart care technologies. Results: The author identifies 18 key studies (17 clinical trials) from 175 citations found in internet databases and categorizes them using problem-specific groupings, medical/health domains, machine learning models, algorithms, and techniques. Conclusions: Machine learning combined with the application of evidence-based practices in healthcare can enhance telehealth and smart care strategies by improving quality of personalized care, early detection of health-related problems, patient quality of life, patient-physician communication, resource efficiency and cost-effectiveness. However, this requires interdisciplinary expertise and collaboration among stakeholders, including clinicians, informaticians, and policymakers. Therefore, further research using clinicall studies, systematic reviews, analyses, and meta-analyses is required to fully exploit the potential of machine learning in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CHILUKLO发布了新的文献求助30
1秒前
思源应助毒扁豆碱采纳,获得10
3秒前
心理小书童完成签到,获得积分10
4秒前
生动半青发布了新的文献求助30
4秒前
Michael_li发布了新的文献求助10
5秒前
苹果丹烟发布了新的文献求助10
5秒前
zhao发布了新的文献求助10
6秒前
阿治完成签到 ,获得积分10
6秒前
lisafu发布了新的文献求助10
7秒前
8秒前
9秒前
Qzc完成签到,获得积分10
9秒前
机智曼安发布了新的文献求助10
10秒前
11秒前
曦子曦子应助小英采纳,获得10
12秒前
李一来完成签到,获得积分10
12秒前
chen发布了新的文献求助10
13秒前
善学以致用应助苹果丹烟采纳,获得10
13秒前
星辰大海应助结实的傲儿采纳,获得30
13秒前
明理的泽洋应助biopp采纳,获得20
13秒前
14秒前
李一来发布了新的文献求助10
16秒前
微微完成签到,获得积分10
16秒前
NexusExplorer应助HUHA1123采纳,获得10
16秒前
17秒前
研友_VZG7GZ应助科研通管家采纳,获得20
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
Yziii应助科研通管家采纳,获得20
17秒前
毛豆应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
陈谷子完成签到,获得积分10
18秒前
Yziii应助科研通管家采纳,获得20
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
18秒前
Emma完成签到,获得积分10
18秒前
Yziii应助科研通管家采纳,获得20
18秒前
Tonnyjing应助科研通管家采纳,获得10
18秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053572
求助须知:如何正确求助?哪些是违规求助? 2710765
关于积分的说明 7423161
捐赠科研通 2355230
什么是DOI,文献DOI怎么找? 1246916
科研通“疑难数据库(出版商)”最低求助积分说明 606188
版权声明 595975