Oral delivery of posaconazole-loaded phospholipid-based nanoformulation: Preparation and optimization using design of experiments, machine learning, and TOPSIS

磷脂 化学 药代动力学 药物输送 脂质体 药理学 口服 药品 色谱法 医学 生物化学 有机化学
作者
Fereshteh Bayat,Simin Dadashzadeh,Reza Aboofazeli,Maryam Torshabi,Ali Hashemi Baghi,Zahra Tamiji,Azadeh Haeri
出处
期刊:International Journal of Pharmaceutics [Elsevier]
卷期号:653: 123879-123879 被引量:3
标识
DOI:10.1016/j.ijpharm.2024.123879
摘要

Phospholipid-based nanosystems show promising potentials for oral administration of hydrophobic drugs. The study introduced a novel approach to optimize posaconazole-loaded phospholipid-based nanoformulation using the design of experiments, machine learning, and Technique for Order of Preference by Similarity to the Ideal Solution. These approaches were used to investigate the impact of various variables on the encapsulation efficiency (EE), particle size, and polydispersity index (PDI). The optimized formulation, with %EE of ∼ 74 %, demonstrated a particle size and PDI of 107.7 nm and 0.174, respectively. The oral pharmacokinetic profiles of the posaconazole suspension, empty nanoformulation + drug suspension, and drug-loaded nanoformulation were evaluated. The nanoformulation significantly increased maximum plasma concentration and the area under the drug plasma concentration–time curve (∼3.9- and 6.2-fold, respectively) and could be administered without regard to meals. MTT and histopathological examinations were carried out to evaluate the safety of the nanoformulation and results exhibited no significant toxicity. Lymphatic transport was found to be the main mechanism of oral delivery. Caco-2 cell studies demonstrated that the mechanism of delivery was not based on an increase in cellular uptake. Our study represents a promising strategy for the development of phospholipid-based nanoformulations as efficient and safe oral delivery systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhenglingying完成签到,获得积分10
刚刚
XX完成签到,获得积分10
刚刚
巅峰小学生完成签到,获得积分20
1秒前
超级翠应助wuran采纳,获得10
1秒前
扶桑发布了新的文献求助10
3秒前
领导范儿应助myyang采纳,获得10
3秒前
Owen应助单薄怡采纳,获得30
3秒前
舸宇发布了新的文献求助10
3秒前
孔雀翎发布了新的文献求助10
4秒前
俊逸的代曼完成签到,获得积分10
4秒前
精明柜子应助美好的觅云采纳,获得100
5秒前
蔡徐坤发布了新的文献求助30
5秒前
5秒前
5秒前
欢喜的丹寒完成签到,获得积分20
5秒前
6秒前
Biohacking完成签到,获得积分10
6秒前
shim完成签到,获得积分10
6秒前
6秒前
6秒前
LL完成签到,获得积分10
6秒前
水本无忧87完成签到,获得积分10
7秒前
7秒前
科研通AI6应助myyang采纳,获得10
8秒前
JHHHH完成签到,获得积分10
9秒前
9秒前
赘婿应助小霖采纳,获得10
9秒前
10秒前
赘婿应助tcf采纳,获得10
11秒前
科研通AI6应助tcf采纳,获得10
11秒前
可爱的函函应助tcf采纳,获得10
11秒前
11秒前
研友_VZG7GZ应助tcf采纳,获得10
11秒前
orixero应助tcf采纳,获得10
11秒前
11秒前
标致无心发布了新的文献求助10
11秒前
ky幻影发布了新的文献求助10
11秒前
小马甲应助黄子腾采纳,获得10
11秒前
12秒前
huiyue完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629915
求助须知:如何正确求助?哪些是违规求助? 4721053
关于积分的说明 14971551
捐赠科研通 4787872
什么是DOI,文献DOI怎么找? 2556612
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478302