Feature Fusion Gate: Improving Transformer Classifier Performance with Controlled Noise

计算机科学 人工智能 分类器(UML) 变压器 模式识别(心理学) 语音识别 电气工程 电压 工程类
作者
Xiang Yu,Lei Bai
出处
期刊:Lecture Notes in Computer Science 卷期号:: 529-540
标识
DOI:10.1007/978-981-99-8850-1_43
摘要

The pre-trained model based on the Transformer architecture is currently the most widely used model in the field of Natural Language Processing (NLP), and feature fusion technology is the process of aggregating features from different sources to form an augmented feature representation that contains more information. In multi-modal or multi-branch NLP models, feature fusion is a commonly used technique, but for models with only a single feature source, feature fusion technology can be difficult to apply. Therefore, this paper proposes a new probabilistic-controlled late fusion encoder-decoder architecture, called the Feature Fusion Gate (FFG), based on both feature fusion technology and Mixup technology to aggregate the feature representations from the last two layers of the NLP pre-trained model to better capture semantic information in samples. During the aggregation process, FFG utilizes controlled noise as a regularization technique to help the model achieve better generalization performance. Experimental results on eight NLP benchmark datasets show that FFG outperforms three other baseline methods and consistently achieves significant performance improvements across DistilBERT, BERT and RoBERTa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
RC_Wang应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得30
刚刚
111发布了新的文献求助10
1秒前
keyanlv完成签到,获得积分10
1秒前
富贵儿发布了新的文献求助10
3秒前
冯度翩翩完成签到,获得积分10
3秒前
sweetbearm应助健壮的涑采纳,获得10
3秒前
村里傻小子完成签到,获得积分20
3秒前
田様应助Khr1stINK采纳,获得10
4秒前
傲娇的凡旋应助小周采纳,获得10
5秒前
潇潇潇完成签到 ,获得积分10
5秒前
6秒前
英俊的铭应助XShu采纳,获得10
7秒前
Hello应助一只大肥猫采纳,获得10
8秒前
allyceacheng完成签到,获得积分10
8秒前
科研通AI5应助phd采纳,获得10
9秒前
9秒前
WTaMi完成签到 ,获得积分10
9秒前
zoe发布了新的文献求助10
9秒前
Owen应助无奈的酒窝采纳,获得10
10秒前
11秒前
13秒前
13秒前
13秒前
科研通AI5应助wangyanwxy采纳,获得10
14秒前
36456657应助豆dou采纳,获得10
14秒前
15秒前
15秒前
16秒前
buno应助jy采纳,获得10
17秒前
paparazzi221发布了新的文献求助10
18秒前
田生完成签到,获得积分10
18秒前
勤劳的忆寒应助Kiyotaka采纳,获得30
18秒前
18秒前
爆米花应助towerman采纳,获得10
19秒前
羊笨笨完成签到 ,获得积分10
19秒前
20秒前
光亮芷天完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808