Fast, Accurate, and Lightweight Memory-Enhanced Embedding Learning Framework for Image-Text Retrieval

计算机科学 图像检索 嵌入 人工智能 图像(数学) 图像处理 计算机视觉 情报检索 模式识别(心理学)
作者
Z. A. Li,Lei Zhang,Kun Zhang,Yongdong Zhang,Zhendong Mao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2024.3358411
摘要

Image-text retrieval is a fundamental task in bridging the semantics between vision and language. The key challenge lies in accurately and efficiently learning the semantic alignment between two heterogeneous modalities. Existing image-text retrieval approaches can be roughly classified into two paradigms. The first independent-embedding paradigm is to learn the global embeddings of two modalities, which can achieve efficient retrieval while failing to effectively capture the cross-modal fine-grained interaction information between images and texts. The second interactive-embedding paradigm is to learn fine-grained alignment between regions and words, which can achieve accurate retrieval while sacrificing retrieval efficiency. In this paper, we propose a novel Independent Memory-Enhanced emBedding learning framework (IMEB), which introduces a lightweight middleware, i.e ., memory network, into the independent-embedding approaches to simultaneously exploit the complementary of both paradigms. Specifically, first, in the training stage, we propose a novel cross-modal association graph to learn cross-modal fine-grained interaction information. Then, we delicately design a memory-assisted embedding learning network to store these prototypical features after interaction as agents, and effectively update the memory network via two learning strategies. Finally, in the inference stage, we directly interact with these agent-level prototypical features from the memory bank, thus efficiently obtaining cross-modal memory-enhanced embeddings. In this way, our model not only effectively learns cross-modal interaction information, but also maintains the retrieval efficiency. Extensive experimental results on two benchmarks, i.e ., Flickr30K and MS-COCO, demonstrate that our IMEB performs favorably against state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mgr完成签到,获得积分10
刚刚
小吉发布了新的文献求助10
1秒前
斯文败类应助嘎嘎嘎嘎采纳,获得10
1秒前
1秒前
是容与呀完成签到,获得积分10
4秒前
充电宝应助Darlin采纳,获得10
4秒前
5秒前
ShengShuoX完成签到,获得积分10
5秒前
6秒前
小山隹完成签到,获得积分10
7秒前
务实谷秋发布了新的文献求助10
8秒前
8秒前
逗号先生发布了新的文献求助10
9秒前
momeak完成签到,获得积分10
9秒前
9秒前
活力的彩虹完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
英俊的铭应助不吃折耳根采纳,获得10
11秒前
sukasuka发布了新的文献求助10
12秒前
wure10发布了新的文献求助10
13秒前
14秒前
xxking发布了新的文献求助10
15秒前
休眠火山发布了新的文献求助10
17秒前
guan发布了新的文献求助10
17秒前
ding应助血压低我学医采纳,获得10
18秒前
holmes完成签到,获得积分10
18秒前
皊晞完成签到 ,获得积分10
18秒前
脑洞疼应助hao采纳,获得10
19秒前
开心心完成签到,获得积分10
20秒前
21秒前
AO完成签到,获得积分10
22秒前
Youngman完成签到,获得积分10
25秒前
27秒前
liuwei发布了新的文献求助10
27秒前
努力加油煤老八完成签到 ,获得积分10
28秒前
现代的邑完成签到,获得积分10
30秒前
DuesKing发布了新的文献求助10
30秒前
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154081
求助须知:如何正确求助?哪些是违规求助? 2804993
关于积分的说明 7862902
捐赠科研通 2463094
什么是DOI,文献DOI怎么找? 1311144
科研通“疑难数据库(出版商)”最低求助积分说明 629460
版权声明 601821