亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

mDS-PCGR: A Bi-Modal Gait Recognition Framework With the Fusion of 4D Radar Point Cloud Sequences and micro-Doppler Signatures

多普勒雷达 多普勒效应 传感器融合 计算机科学 雷达 点云 遥感 情态动词 点目标 融合 步态 点(几何) 人工智能 地质学 合成孔径雷达 电信 物理 物理医学与康复 数学 医学 化学 语言学 哲学 几何学 天文 高分子化学
作者
Chongrun Ma,Zhenyu Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jsen.2024.3355421
摘要

Radar-based gait recognition has emerged as a promising solution for non-invasive human identification. However, relying solely on single-modal radar gait representations, such as micro-Doppler signature and radar point cloud, proves inadequate for robust gait recognition in the presence of complex perceptual conditions. Additionally, achieving a high level of generalization, particularly when dealing with new subjects having limited training samples, is crucial for practical gait recognition. To address these challenges, we present a novel joint micro-Doppler and radar point clouds gait recognition framework (mDS-PCGR) in this study. This framework fuses gait features derived from both micro-Doppler signatures and four-dimension (4D) radar point cloud sequences. Firstly, a tracking-based preprocessing method is proposed to acquire high-quality micro-Doppler signatures and 4D radar point cloud sequences, while suppressing the multipath interference in complex perceptual conditions. Secondly, a dual-flow fusion network is designed to extract discriminative gait features based on complementation of the two modalities to each other. Finally, a metric-based few-shot learning mechanism is used to instruct the optimization of dual-flow fusion network, combining triplet loss with center loss to achieve the identification of new subjects with few training samples. Extensive evaluation on real 4D millimeter-wave radar measurement under multipath interfered and cross-view conditions is provided. Experimental results show the superior performance of the proposed mDS-PCGR, leveraging effective gait information from two modalities. It outperforms single-modal gait recognition methods and achieves the highest identification accuracy for new subjects with limited gallery samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
charitial完成签到,获得积分10
20秒前
28秒前
32秒前
39秒前
41秒前
李健应助孤独的送终采纳,获得10
47秒前
科研通AI6.1应助科研通管家采纳,获得200
51秒前
科研通AI6应助科研通管家采纳,获得10
51秒前
长言完成签到 ,获得积分10
54秒前
飞常爱你哦完成签到,获得积分10
1分钟前
ok发布了新的文献求助10
1分钟前
研友_VZG7GZ应助meiyi采纳,获得10
1分钟前
少年锦时完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
桃子e发布了新的文献求助10
2分钟前
jiangx完成签到,获得积分10
2分钟前
2分钟前
手可摘星陈同学完成签到 ,获得积分10
2分钟前
jiangx发布了新的文献求助10
2分钟前
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
啵子发布了新的文献求助10
2分钟前
丘比特应助ok采纳,获得10
3分钟前
3分钟前
我是老大应助六子采纳,获得10
3分钟前
美满尔蓝完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
1234发布了新的文献求助10
3分钟前
3分钟前
3分钟前
谈理想发布了新的文献求助20
3分钟前
ok发布了新的文献求助10
3分钟前
六子发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780317
求助须知:如何正确求助?哪些是违规求助? 5654644
关于积分的说明 15453043
捐赠科研通 4911039
什么是DOI,文献DOI怎么找? 2643222
邀请新用户注册赠送积分活动 1590873
关于科研通互助平台的介绍 1545379