mDS-PCGR: A Bi-Modal Gait Recognition Framework With the Fusion of 4D Radar Point Cloud Sequences and micro-Doppler Signatures

多普勒雷达 多普勒效应 传感器融合 计算机科学 雷达 点云 遥感 情态动词 点目标 融合 步态 点(几何) 人工智能 地质学 合成孔径雷达 电信 物理 物理医学与康复 数学 医学 化学 语言学 哲学 几何学 天文 高分子化学
作者
Chongrun Ma,Zhenyu Liu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:: 1-1
标识
DOI:10.1109/jsen.2024.3355421
摘要

Radar-based gait recognition has emerged as a promising solution for non-invasive human identification. However, relying solely on single-modal radar gait representations, such as micro-Doppler signature and radar point cloud, proves inadequate for robust gait recognition in the presence of complex perceptual conditions. Additionally, achieving a high level of generalization, particularly when dealing with new subjects having limited training samples, is crucial for practical gait recognition. To address these challenges, we present a novel joint micro-Doppler and radar point clouds gait recognition framework (mDS-PCGR) in this study. This framework fuses gait features derived from both micro-Doppler signatures and four-dimension (4D) radar point cloud sequences. Firstly, a tracking-based preprocessing method is proposed to acquire high-quality micro-Doppler signatures and 4D radar point cloud sequences, while suppressing the multipath interference in complex perceptual conditions. Secondly, a dual-flow fusion network is designed to extract discriminative gait features based on complementation of the two modalities to each other. Finally, a metric-based few-shot learning mechanism is used to instruct the optimization of dual-flow fusion network, combining triplet loss with center loss to achieve the identification of new subjects with few training samples. Extensive evaluation on real 4D millimeter-wave radar measurement under multipath interfered and cross-view conditions is provided. Experimental results show the superior performance of the proposed mDS-PCGR, leveraging effective gait information from two modalities. It outperforms single-modal gait recognition methods and achieves the highest identification accuracy for new subjects with limited gallery samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助123采纳,获得10
刚刚
凉茶发布了新的文献求助10
1秒前
jitianxing完成签到,获得积分20
1秒前
BK_发布了新的文献求助10
2秒前
2秒前
FashionBoy应助李瑞采纳,获得10
3秒前
毛豆爸爸发布了新的文献求助10
4秒前
双儿发布了新的文献求助10
5秒前
6秒前
我我我完成签到,获得积分10
6秒前
GCJ完成签到,获得积分10
6秒前
Jasen完成签到 ,获得积分10
7秒前
冬夏完成签到,获得积分10
7秒前
skyer应助jitianxing采纳,获得10
7秒前
Akim应助xiaoyuanbao1988采纳,获得10
7秒前
da1234发布了新的文献求助10
9秒前
9秒前
mianbao完成签到,获得积分10
9秒前
da发布了新的文献求助10
10秒前
11秒前
12秒前
13秒前
14秒前
烟花应助江洋大盗采纳,获得10
14秒前
彩色青雪完成签到,获得积分20
15秒前
LAIJINSHENG发布了新的文献求助10
15秒前
weske发布了新的文献求助10
15秒前
16秒前
16秒前
李爱国应助dzll采纳,获得10
17秒前
CipherSage应助chel采纳,获得30
17秒前
dachang发布了新的文献求助10
17秒前
yyfer完成签到,获得积分10
18秒前
大都督完成签到,获得积分10
18秒前
shower_009完成签到,获得积分10
19秒前
Rondab应助科研通管家采纳,获得10
19秒前
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160