Prediction models for postoperative delirium in elderly patients with machine-learning algorithms and SHapley Additive exPlanations

逻辑回归 机器学习 接收机工作特性 算法 列线图 医学 随机森林 支持向量机 人工智能 髋部骨折 内科学 计算机科学 骨质疏松症
作者
Yuxiang Song,Di Zhang,Qian Wang,Yuqing Liu,Kunsha Chen,Jingjia Sun,Likai Shi,Baowei Li,Xiaodong Yang,Weidong Mi,Jiangbei Cao
出处
期刊:Translational Psychiatry [Springer Nature]
卷期号:14 (1) 被引量:8
标识
DOI:10.1038/s41398-024-02762-w
摘要

Abstract Postoperative delirium (POD) is a common and severe complication in elderly patients with hip fractures. Identifying high-risk patients with POD can help improve the outcome of patients with hip fractures. We conducted a retrospective study on elderly patients (≥65 years of age) who underwent orthopedic surgery with hip fracture between January 2014 and August 2019. Conventional logistic regression and five machine-learning algorithms were used to construct prediction models of POD. A nomogram for POD prediction was built with the logistic regression method. The area under the receiver operating characteristic curve (AUC-ROC), accuracy, sensitivity, and precision were calculated to evaluate different models. Feature importance of individuals was interpreted using Shapley Additive Explanations (SHAP). About 797 patients were enrolled in the study, with the incidence of POD at 9.28% (74/797). The age, renal insufficiency, chronic obstructive pulmonary disease (COPD), use of antipsychotics, lactate dehydrogenase (LDH), and C-reactive protein are used to build a nomogram for POD with an AUC of 0.71. The AUCs of five machine-learning models are 0.81 (Random Forest), 0.80 (GBM), 0.68 (AdaBoost), 0.77 (XGBoost), and 0.70 (SVM). The sensitivities of the six models range from 68.8% (logistic regression and SVM) to 91.9% (Random Forest). The precisions of the six machine-learning models range from 18.3% (logistic regression) to 67.8% (SVM). Six prediction models of POD in patients with hip fractures were constructed using logistic regression and five machine-learning algorithms. The application of machine-learning algorithms could provide convenient POD risk stratification to benefit elderly hip fracture patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼鱼鱼KYSL完成签到 ,获得积分10
2秒前
落雁沙发布了新的文献求助10
3秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
3秒前
sutharsons应助Rose_Yang采纳,获得100
6秒前
Orange应助落雁沙采纳,获得10
8秒前
舒心完成签到,获得积分10
10秒前
12秒前
13秒前
小安完成签到,获得积分10
14秒前
清堂发布了新的文献求助10
16秒前
18秒前
Xiaoxiao应助小安采纳,获得20
20秒前
20秒前
20秒前
踏实沂完成签到 ,获得积分10
21秒前
21秒前
wanci应助认真摆烂采纳,获得10
21秒前
24秒前
24秒前
24秒前
24秒前
cc发布了新的文献求助10
25秒前
money发布了新的文献求助10
26秒前
27秒前
27秒前
chang发布了新的文献求助10
28秒前
娟儿完成签到 ,获得积分10
31秒前
32秒前
Flori完成签到 ,获得积分10
32秒前
kunkun发布了新的文献求助10
32秒前
余雨梅发布了新的文献求助20
33秒前
河镜发布了新的文献求助30
34秒前
清爽老九发布了新的文献求助10
34秒前
蔚蓝海2完成签到 ,获得积分10
34秒前
华仔应助chang采纳,获得10
35秒前
Jasper应助科研通管家采纳,获得10
36秒前
迟大猫应助科研通管家采纳,获得10
36秒前
猪猪hero应助科研通管家采纳,获得10
36秒前
迟大猫应助科研通管家采纳,获得10
36秒前
良辰应助科研通管家采纳,获得10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673993
求助须知:如何正确求助?哪些是违规求助? 3229404
关于积分的说明 9785706
捐赠科研通 2939973
什么是DOI,文献DOI怎么找? 1611552
邀请新用户注册赠送积分活动 760987
科研通“疑难数据库(出版商)”最低求助积分说明 736344