Development and validation of a soft voting-based model for urban fire risk prediction

计算机科学 聚类分析 网格 消防工程 人工神经网络 梯度升压 数据挖掘 机器学习 人工智能 随机森林 工程类 地理 建筑工程 大地测量学
作者
Shijie Huang,Jingwei Ji,Yu Wang,Wenju Li,Yuechuan Zheng
出处
期刊:International journal of disaster risk reduction [Elsevier BV]
卷期号:101: 104224-104224 被引量:6
标识
DOI:10.1016/j.ijdrr.2023.104224
摘要

Early identification of fire risk helps to mitigate the possible consequences incurred by fire, and meanwhile helps optimize the allocation of rescue resources. In this paper, we propose a comprehensive machine learning-based approach for predicting fire risk. The study area is divided into multiple 1 km × 1 km grid cells, and fire incident records, Point of Interest (POI) data, and meteorological data are geographically mapped to these grid cells. By applying the k-means clustering algorithm to analyze monthly fire occurrences, fire risk levels are assigned to each grid cell. A dataset is constructed with the target variable being the fire risk level and the predictive variables being POI data and meteorological data. After undergoing feature engineering, the dataset is divided into training and testing sets based on a time span. Deep neural networks, Randomforest, and Extreme Gradient Boosting (XGBoost) algorithms are trained on the training set and combined using a soft voting approach to create the final soft voting-based model (SV-based model). The performance of the SV-based model is rigorously evaluated on the testing set, achieving a prediction accuracy of 98.9 %. When evaluated using the AUC and F1-score as metrics, the scores are 0.92 and 0.98, respectively, surpassing other machine learning models used for comparison. The findings of this research contribute to the field of urban fire risk management and provide valuable insights for decision-makers and urban planners in formulating proactive fire prevention strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助踏实小蘑菇采纳,获得10
1秒前
2秒前
热心市民小红花应助4651132采纳,获得50
2秒前
orixero应助会飞的猪采纳,获得10
3秒前
yznfly应助heart采纳,获得30
3秒前
不想上学发布了新的文献求助20
4秒前
4秒前
慧有钱完成签到,获得积分20
5秒前
巧克力coco发布了新的文献求助10
6秒前
7秒前
Accept2024完成签到,获得积分10
7秒前
Jiao完成签到,获得积分10
7秒前
8秒前
8秒前
chuling发布了新的文献求助10
9秒前
9秒前
思源应助圆圆采纳,获得10
9秒前
QL应助剑履上殿采纳,获得50
10秒前
汉堡包应助一介书生采纳,获得10
10秒前
江苏彭于晏完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
yefeng完成签到,获得积分10
12秒前
12秒前
花生了什么树完成签到,获得积分10
12秒前
青青完成签到,获得积分10
12秒前
xing发布了新的文献求助10
13秒前
小蘑菇应助叶访云采纳,获得10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
卿欣完成签到 ,获得积分10
13秒前
方向完成签到,获得积分10
13秒前
14秒前
核桃应助guan采纳,获得20
14秒前
知许解夏应助zzz采纳,获得10
14秒前
14秒前
melone发布了新的文献求助10
14秒前
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961351
求助须知:如何正确求助?哪些是违规求助? 3507711
关于积分的说明 11137438
捐赠科研通 3240131
什么是DOI,文献DOI怎么找? 1790762
邀请新用户注册赠送积分活动 872504
科研通“疑难数据库(出版商)”最低求助积分说明 803271