Integrating Deep Learning and Synthetic Biology: A Co-Design Approach for Enhancing Gene Expression via N-terminal Coding Sequences

终端(电信) 编码(社会科学) 基因 计算生物学 合成生物学 表达式(计算机科学) 基因表达 编码区 生物 计算机科学 遗传学 细胞生物学 计算机网络 数学 程序设计语言 统计
作者
Zhanglu Yan,Weiran Chu,Yuhua Sheng,Kaiwen Tang,Shida Wang,Yanfeng Liu,Weng‐Fai Wong
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2402.13297
摘要

N-terminal coding sequence (NCS) influences gene expression by impacting the translation initiation rate. The NCS optimization problem is to find an NCS that maximizes gene expression. The problem is important in genetic engineering. However, current methods for NCS optimization such as rational design and statistics-guided approaches are labor-intensive yield only relatively small improvements. This paper introduces a deep learning/synthetic biology co-designed few-shot training workflow for NCS optimization. Our method utilizes k-nearest encoding followed by word2vec to encode the NCS, then performs feature extraction using attention mechanisms, before constructing a time-series network for predicting gene expression intensity, and finally a direct search algorithm identifies the optimal NCS with limited training data. We took green fluorescent protein (GFP) expressed by Bacillus subtilis as a reporting protein of NCSs, and employed the fluorescence enhancement factor as the metric of NCS optimization. Within just six iterative experiments, our model generated an NCS (MLD62) that increased average GFP expression by 5.41-fold, outperforming the state-of-the-art NCS designs. Extending our findings beyond GFP, we showed that our engineered NCS (MLD62) can effectively boost the production of N-acetylneuraminic acid by enhancing the expression of the crucial rate-limiting GNA1 gene, demonstrating its practical utility. We have open-sourced our NCS expression database and experimental procedures for public use.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
阳光听安完成签到,获得积分20
1秒前
L1发布了新的文献求助10
1秒前
1秒前
2秒前
赘婿应助mcs0808采纳,获得10
4秒前
shanyuyulai完成签到 ,获得积分10
4秒前
汉堡包应助zhy采纳,获得10
5秒前
吕嫣娆完成签到 ,获得积分10
5秒前
科研通AI6应助哈哈哈采纳,获得10
5秒前
CipherSage应助司徒绮采纳,获得10
5秒前
琉璃发布了新的文献求助10
6秒前
凶狠的冰棍完成签到,获得积分10
6秒前
7秒前
7秒前
科研通AI6应助黑马王子采纳,获得10
8秒前
9秒前
9秒前
9秒前
10秒前
华仔应助131310采纳,获得30
11秒前
丘比特应助白承恩采纳,获得10
12秒前
周周发布了新的文献求助10
12秒前
12秒前
辞南发布了新的文献求助10
12秒前
14秒前
14秒前
14秒前
77完成签到,获得积分10
16秒前
领导范儿应助陶醉的开山采纳,获得10
16秒前
司徒绮发布了新的文献求助10
17秒前
小二郎应助luo采纳,获得10
18秒前
香蕉觅云应助栀紫采纳,获得10
18秒前
欣喜安蕾完成签到,获得积分10
19秒前
77发布了新的文献求助10
19秒前
Zz发布了新的文献求助10
20秒前
科研通AI6应助hahahaha采纳,获得10
20秒前
隐形曼青应助小蘑菇采纳,获得10
20秒前
21秒前
tess发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532370
求助须知:如何正确求助?哪些是违规求助? 4621091
关于积分的说明 14576802
捐赠科研通 4560970
什么是DOI,文献DOI怎么找? 2499032
邀请新用户注册赠送积分活动 1479026
关于科研通互助平台的介绍 1450265