Integrating Deep Learning and Synthetic Biology: A Co-Design Approach for Enhancing Gene Expression via N-terminal Coding Sequences

终端(电信) 编码(社会科学) 基因 计算生物学 合成生物学 表达式(计算机科学) 基因表达 编码区 生物 计算机科学 遗传学 细胞生物学 计算机网络 数学 程序设计语言 统计
作者
Zhanglu Yan,Weiran Chu,Yuhua Sheng,Kaiwen Tang,Shida Wang,Yanfeng Liu,Weng‐Fai Wong
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2402.13297
摘要

N-terminal coding sequence (NCS) influences gene expression by impacting the translation initiation rate. The NCS optimization problem is to find an NCS that maximizes gene expression. The problem is important in genetic engineering. However, current methods for NCS optimization such as rational design and statistics-guided approaches are labor-intensive yield only relatively small improvements. This paper introduces a deep learning/synthetic biology co-designed few-shot training workflow for NCS optimization. Our method utilizes k-nearest encoding followed by word2vec to encode the NCS, then performs feature extraction using attention mechanisms, before constructing a time-series network for predicting gene expression intensity, and finally a direct search algorithm identifies the optimal NCS with limited training data. We took green fluorescent protein (GFP) expressed by Bacillus subtilis as a reporting protein of NCSs, and employed the fluorescence enhancement factor as the metric of NCS optimization. Within just six iterative experiments, our model generated an NCS (MLD62) that increased average GFP expression by 5.41-fold, outperforming the state-of-the-art NCS designs. Extending our findings beyond GFP, we showed that our engineered NCS (MLD62) can effectively boost the production of N-acetylneuraminic acid by enhancing the expression of the crucial rate-limiting GNA1 gene, demonstrating its practical utility. We have open-sourced our NCS expression database and experimental procedures for public use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助科研通管家采纳,获得10
刚刚
axin应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
刚刚
李健应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
1秒前
lu应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
研友_MLJldZ发布了新的文献求助10
1秒前
wys完成签到 ,获得积分10
2秒前
3秒前
michaelvin完成签到,获得积分10
3秒前
学术大白完成签到 ,获得积分10
6秒前
6秒前
SYT完成签到,获得积分10
7秒前
8秒前
10秒前
10秒前
10秒前
11秒前
11秒前
魏伯安发布了新的文献求助10
11秒前
11秒前
zhouleiwang完成签到,获得积分10
12秒前
李爱国应助aiming采纳,获得10
13秒前
无奈傲菡完成签到,获得积分10
14秒前
TT发布了新的文献求助10
14秒前
啦啦啦发布了新的文献求助10
15秒前
sun发布了新的文献求助10
16秒前
荣荣完成签到,获得积分10
16秒前
17秒前
小安完成签到,获得积分10
18秒前
Spencer完成签到 ,获得积分10
18秒前
PengHu完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849