Integrating Deep Learning and Synthetic Biology: A Co-Design Approach for Enhancing Gene Expression via N-terminal Coding Sequences

终端(电信) 编码(社会科学) 基因 计算生物学 合成生物学 表达式(计算机科学) 基因表达 编码区 生物 计算机科学 遗传学 细胞生物学 计算机网络 数学 程序设计语言 统计
作者
Zhanglu Yan,Weiran Chu,Yuhua Sheng,Kaiwen Tang,Shida Wang,Yanfeng Liu,Weng‐Fai Wong
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2402.13297
摘要

N-terminal coding sequence (NCS) influences gene expression by impacting the translation initiation rate. The NCS optimization problem is to find an NCS that maximizes gene expression. The problem is important in genetic engineering. However, current methods for NCS optimization such as rational design and statistics-guided approaches are labor-intensive yield only relatively small improvements. This paper introduces a deep learning/synthetic biology co-designed few-shot training workflow for NCS optimization. Our method utilizes k-nearest encoding followed by word2vec to encode the NCS, then performs feature extraction using attention mechanisms, before constructing a time-series network for predicting gene expression intensity, and finally a direct search algorithm identifies the optimal NCS with limited training data. We took green fluorescent protein (GFP) expressed by Bacillus subtilis as a reporting protein of NCSs, and employed the fluorescence enhancement factor as the metric of NCS optimization. Within just six iterative experiments, our model generated an NCS (MLD62) that increased average GFP expression by 5.41-fold, outperforming the state-of-the-art NCS designs. Extending our findings beyond GFP, we showed that our engineered NCS (MLD62) can effectively boost the production of N-acetylneuraminic acid by enhancing the expression of the crucial rate-limiting GNA1 gene, demonstrating its practical utility. We have open-sourced our NCS expression database and experimental procedures for public use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
511宋完成签到,获得积分10
2秒前
iris完成签到 ,获得积分10
3秒前
peng发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
我是老大应助林子采纳,获得10
5秒前
5秒前
Owen应助王淳采纳,获得10
5秒前
爆米花应助长风采纳,获得10
5秒前
科目三应助长风采纳,获得10
5秒前
热心市民小红花应助长风采纳,获得10
5秒前
李健应助长风采纳,获得10
5秒前
6秒前
6秒前
bluelemon完成签到,获得积分10
6秒前
6秒前
qq完成签到,获得积分10
6秒前
yiyi完成签到,获得积分10
6秒前
Bey完成签到 ,获得积分10
7秒前
chem发布了新的文献求助10
7秒前
zzz发布了新的文献求助10
7秒前
香蕉觅云应助hwezhu采纳,获得10
8秒前
8秒前
沙哈哈发布了新的文献求助10
9秒前
略略略发布了新的文献求助10
9秒前
yuxiao发布了新的文献求助10
10秒前
Qingcyx发布了新的文献求助10
11秒前
huangwenjin发布了新的文献求助10
11秒前
yar应助善良海云采纳,获得10
11秒前
11秒前
丁凛完成签到,获得积分10
13秒前
小马甲应助yibo采纳,获得10
13秒前
共享精神应助Mikecheng采纳,获得10
15秒前
15秒前
15秒前
苏苏发布了新的文献求助10
15秒前
Andy完成签到 ,获得积分10
16秒前
Owen应助汤圆采纳,获得10
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954557
求助须知:如何正确求助?哪些是违规求助? 3500718
关于积分的说明 11100747
捐赠科研通 3231204
什么是DOI,文献DOI怎么找? 1786337
邀请新用户注册赠送积分活动 869958
科研通“疑难数据库(出版商)”最低求助积分说明 801737