亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Robust and Automatic Algorithm for TLS–ALS Point Cloud Registration in Forest Environments Based on Tree Locations

点云 计算机科学 树(集合论) 迭代最近点 过程(计算) 遥感 云计算 激光扫描 人工智能 k-d 树 数据挖掘 计算机视觉 算法 数学 激光器 地理 数学分析 物理 光学 树遍历 操作系统
作者
Fariborz Ghorbani,Yi-Chen Chen,Markus Hollaus,Norbert Pfeifer
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 4015-4035 被引量:5
标识
DOI:10.1109/jstars.2024.3355173
摘要

The utilization of terrestrial laser scanning (TLS) and airborne laser scanning (ALS) point cloud data in forest inventory studies has significantly increased. Fusing of TLS and ALS point cloud data has been recognized as an effective approach in forest studies. In this regard, co-registration of point clouds is considered one of the crucial steps in the integration process. Co-registering point clouds in forest environments faces various challenges, including unstable features, extensive occlusions, different viewpoints, and differences in point cloud densities. To address these intricate challenges, this study introduces an automated and robust method for co-registering TLS and ALS point clouds based on the correspondence of individual tree locations in forest environments. Recently, tree location-based methodologies have been advanced to grapple with these complexities in forest environments. However, many of these methods are highly sensitive to the accuracy of tree positioning. The proposed approach aims to reduce sensitivity to individual tree positioning accuracy. Initially, the positions of individual trees in both TLS and ALS data are extracted. Then, a filtering approach is applied to eliminate positions with low potential for corresponding matches in the TLS and ALS dataset. Since larger trees in the TLS data have a higher potential for corresponding matches in the ALS data, an iterative process is applied to identify correspondences between trees in both datasets. After estimating transformation parameters, the co-registration process is executed. The proposed method is applied on six datasets with varying forest complexities. The results demonstrate a high success rate up to 100% if the starting position of the TLS plots are located within ∼4 hectares (∼2000 trees). Additionally, the potential of the proposed method for co-registering TLS data with ALS data across different search areas and varying number of trees is evaluated in detail. The outcomes indicate that successful co-registration of TLS plot with 50 m diameter to ALS data is successful in the best case within a search radius of approximately 113 hectares (∼60,000 tree locations) and in the worst case for around 20 hectares (∼10,000 tree locations) depending on the forest complexity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白发布了新的文献求助10
5秒前
9秒前
xona完成签到,获得积分10
17秒前
Ava应助向日葵采纳,获得10
30秒前
慕青应助对流域采纳,获得10
30秒前
hm完成签到,获得积分20
30秒前
39秒前
40秒前
42秒前
对流域发布了新的文献求助10
42秒前
向日葵完成签到,获得积分10
42秒前
向日葵发布了新的文献求助10
47秒前
医路通行发布了新的文献求助10
56秒前
rikii完成签到 ,获得积分10
1分钟前
yema完成签到 ,获得积分10
1分钟前
1分钟前
wyg1994发布了新的文献求助10
1分钟前
Cbp完成签到,获得积分10
1分钟前
七熵完成签到 ,获得积分10
1分钟前
医路通行完成签到,获得积分10
1分钟前
1分钟前
1分钟前
marshyyy完成签到,获得积分10
1分钟前
a7662888完成签到,获得积分0
2分钟前
三三完成签到 ,获得积分10
2分钟前
h3m完成签到 ,获得积分10
2分钟前
嵇元容完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
shenhai发布了新的文献求助10
2分钟前
额狐狸发布了新的文献求助10
2分钟前
科研通AI2S应助过时的起眸采纳,获得10
2分钟前
并肩完成签到 ,获得积分10
2分钟前
2分钟前
科研小白完成签到,获得积分10
2分钟前
2分钟前
彭于晏应助shenhai采纳,获得10
3分钟前
Bingtao_Lian完成签到 ,获得积分10
3分钟前
3分钟前
星落枝头发布了新的文献求助10
3分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136993
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784062
捐赠科研通 2444016
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989