A Robust and Automatic Algorithm for TLS–ALS Point Cloud Registration in Forest Environments Based on Tree Locations

点云 计算机科学 树(集合论) 迭代最近点 过程(计算) 遥感 云计算 激光扫描 人工智能 k-d 树 数据挖掘 计算机视觉 算法 数学 激光器 地理 数学分析 物理 光学 树遍历 操作系统
作者
Fariborz Ghorbani,Yi-Chen Chen,Markus Hollaus,Norbert Pfeifer
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 4015-4035 被引量:7
标识
DOI:10.1109/jstars.2024.3355173
摘要

The utilization of terrestrial laser scanning (TLS) and airborne laser scanning (ALS) point cloud data in forest inventory studies has significantly increased. Fusing of TLS and ALS point cloud data has been recognized as an effective approach in forest studies. In this regard, co-registration of point clouds is considered one of the crucial steps in the integration process. Co-registering point clouds in forest environments faces various challenges, including unstable features, extensive occlusions, different viewpoints, and differences in point cloud densities. To address these intricate challenges, this study introduces an automated and robust method for co-registering TLS and ALS point clouds based on the correspondence of individual tree locations in forest environments. Recently, tree location-based methodologies have been advanced to grapple with these complexities in forest environments. However, many of these methods are highly sensitive to the accuracy of tree positioning. The proposed approach aims to reduce sensitivity to individual tree positioning accuracy. Initially, the positions of individual trees in both TLS and ALS data are extracted. Then, a filtering approach is applied to eliminate positions with low potential for corresponding matches in the TLS and ALS dataset. Since larger trees in the TLS data have a higher potential for corresponding matches in the ALS data, an iterative process is applied to identify correspondences between trees in both datasets. After estimating transformation parameters, the co-registration process is executed. The proposed method is applied on six datasets with varying forest complexities. The results demonstrate a high success rate up to 100% if the starting position of the TLS plots are located within ∼4 hectares (∼2000 trees). Additionally, the potential of the proposed method for co-registering TLS data with ALS data across different search areas and varying number of trees is evaluated in detail. The outcomes indicate that successful co-registration of TLS plot with 50 m diameter to ALS data is successful in the best case within a search radius of approximately 113 hectares (∼60,000 tree locations) and in the worst case for around 20 hectares (∼10,000 tree locations) depending on the forest complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圈圈发布了新的文献求助10
刚刚
打打应助时尚的蚂蚁采纳,获得10
1秒前
贾文斌完成签到,获得积分10
1秒前
chinning发布了新的文献求助10
1秒前
完美世界应助wangn采纳,获得10
2秒前
Mid完成签到,获得积分20
2秒前
共享精神应助Morgenstern_ZH采纳,获得10
2秒前
2秒前
2秒前
搞怪画笔完成签到 ,获得积分10
2秒前
皇城有饭局完成签到,获得积分10
2秒前
lvanlvan完成签到,获得积分10
2秒前
哲999发布了新的文献求助10
3秒前
Jadie完成签到,获得积分10
3秒前
3秒前
morlison发布了新的文献求助10
3秒前
3秒前
无花果应助佳佳采纳,获得10
3秒前
无花果应助nn采纳,获得10
4秒前
置默完成签到,获得积分10
4秒前
gww完成签到,获得积分20
5秒前
zhmyjk发布了新的文献求助60
5秒前
MADKAI发布了新的文献求助20
5秒前
5秒前
隐形曼青应助gaos采纳,获得10
5秒前
侦察兵发布了新的文献求助10
6秒前
JamesPei应助科研小小小白采纳,获得10
6秒前
6秒前
yaqin@9909完成签到,获得积分10
6秒前
嗨JL完成签到,获得积分10
6秒前
帅玉玉发布了新的文献求助10
6秒前
鳗鱼冰薇完成签到 ,获得积分10
8秒前
tanjianxin发布了新的文献求助10
8秒前
9秒前
霸王龙完成签到,获得积分10
9秒前
9秒前
9秒前
细心映寒发布了新的文献求助10
9秒前
哈哈发布了新的文献求助10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759