材料科学
X射线光电子能谱
氢键
电化学
傅里叶变换红外光谱
氢气储存
离子
氢
化学工程
电极
分子
有机化学
物理化学
化学
复合材料
合金
工程类
作者
Chaofei Guo,Yun Gao,Shang‐Qi Li,Yuxuan Wang,Xuejuan Yang,Chuanwei Zhi,Hang Zhang,Yan‐Fang Zhu,Shuangqiang Chen,Shulei Chou,Shi Xue Dou,Yao Xiao,Xi‐Ping Luo
标识
DOI:10.1002/adfm.202314851
摘要
Abstract Hydrogen‐bonded organic frameworks (HOFs) are considered as potential choice for future energy storage systems due to their adjustable chemistry, environment friendliness, and cost‐effectiveness. In this study, structurally stabilized and aldehyde‐tuned hydrogen‐bonded organic frameworks (HOFs‐8) are designed and prepared to contain arrayed electronegative sites for sodium‐ion storage. Benefitting from the flexible hydrogen bond and unique structural symmetry, HOFs‐8 can achieve efficient utilization of the active sites and fast transport of sodium ions and electrons. The HOFs‐8 electrode exhibits an impressive lifespan of 5000 cycles at 3.66 A g −1 (20 C). In situ Fourier Transform infrared spectroscopy (in situ FT‐IR) and ex situ X‐ray Photoelectron Spectroscopy (ex situ XPS) analyses are performed to illustrate the mechanism of sodium‐ion storage involving aldehyde‐tuned C═O. Additionally, flexible hydrogen bonds in HOFs materials with unique structural symmetries are investigated to elucidate the mechanism of hydrogen bonding for improving their electrochemical properties. Density functional theory (DFT) simulations verified that HOFs‐8 has excellent Na + diffusion kinetics, enabling it to demonstrate outstanding rate capability. This work offers insight into the design of new electrodes and improved HOFs, which are expected to have tremendous potential in energy storage systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI