纳米反应器
光催化
制氢
光热治疗
材料科学
壳体(结构)
纳米技术
芯(光纤)
电子
化学工程
氢
化学
催化作用
纳米颗粒
复合材料
工程类
物理
生物化学
有机化学
量子力学
作者
Yu Shen,Yuxing Shi,Zhouze Chen,Shunhong Zhang,Keyi Chen,Xuefeng Luo,Feng Guo,Guangzhao Wang,Weilong Shi
标识
DOI:10.1016/j.cej.2024.149607
摘要
Photothermal-assisted photocatalysis play crucial factors in solar to chemical/thermal energy conversion via the light–matter interaction. Herein, a photothermal nanoconfinement reactor comprised of a co-catalyst (Mo2C hollow spheres) as the core and a semiconductor photocatalyst (ZnIn2S4 nanosheets) as the shell was designed for achieving high-efficient photothermal-assisted photocatalytic H2 production. Remarkably, the optimal Mo2C@ZnIn2S4 core–shell nanoreactor attains an astonishing H2 evolution rate of 26.1 mmol g−1 h−1 under simulated sunlight irradiation and apparent quantum efficiencies (AQE, 420 nm) value of 19.4 %. The enhanced photocatalytic H2 production performance is attributed the unique core–shell structure can induce the directional migration of the photo-generated electrons excited by the shell (ZnIn2S4) to the nuclear region (Mo2C) with photothermal property, and effectively transport the electrons to the high-temperature zone through the nanoconfinement effect, thus ensuring the effective separation of the photogenerated carriers. This study provides an innovative design for high-efficient photothermal-assisted photocatalyst based on nanoconfinement effect.
科研通智能强力驱动
Strongly Powered by AbleSci AI