亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A customized adaptive large neighborhood search algorithm for solving a multi-objective home health care problem in a pandemic environment

计算机科学 启发式 工作量 帕累托原理 模拟退火 数学优化 启发式 多目标优化 约束规划 车辆路径问题 背景(考古学) 调度(生产过程) 解算器 运筹学 算法 人工智能 布线(电子设计自动化) 机器学习 随机规划 数学 计算机网络 古生物学 生物 程序设计语言 操作系统
作者
Wenheng Liu,Mahjoub Dridib,Amir M. Fathollahi-Fard,Amir Hajjam El Hassani
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:86: 101507-101507 被引量:3
标识
DOI:10.1016/j.swevo.2024.101507
摘要

This paper addresses a home health care routing and scheduling problem (HHCRSP) specifically focusing on the context of a pandemic environment. The investigated HHCRSP involves assigning appropriate caregivers to patients and optimizing caregiver routes while minimizing total travel costs, workload differences among caregivers, and negative patient preferences. The problem accounts for synchronized visits, lunch breaks, time windows, and special pandemic constraints (e.g., maximum total contact times for each caregiver and multi-trip routes). To our knowledge, this is the first study to address these constraints and goals simultaneously in the HHCRSP. To solve the problem, we propose a customized algorithm, AMOALNS, which combines archived multi-objective simulated annealing (AMOSA) with adaptive large neighborhood search (ALNS). Our AMOALNS generates a new solution iteratively through problem-specific heuristics within ALNS, employing a multi-objective optimization framework to intelligently disrupt and repair feasible solutions. The adaptive updating of heuristic weights is determined by the domination relation between the newly generated solution and non-dominated solutions stored in the archive of AMOSA. To show the performance of the AMOALNS through extensive experiments, we compare it with the epsilon constraint method and other state-of-the-art multi-objective algorithms in the literature. Additionally, we use Pareto front analysis to aid decision-makers in comprehending the shape of the Pareto front and making informed choices based on their preferences. The trade-off analysis shows that minimizing total travel costs is the hardest to achieve, and optimizing workload balancing is worthwhile. Also, most of the non-dominated solutions can simultaneously achieve low workload balancing and high preference of patients. Finally, the sensitivity analyses reveal that the time windows classifications and instances sizes have significant impact on the compromising solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hugeyoung完成签到,获得积分10
40秒前
1分钟前
marco发布了新的文献求助10
1分钟前
1分钟前
英姑应助marco采纳,获得10
1分钟前
1分钟前
1分钟前
张泽崇发布了新的文献求助10
2分钟前
姜忆霜完成签到 ,获得积分10
2分钟前
2分钟前
英俊的铭应助科研通管家采纳,获得20
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
2分钟前
bing完成签到 ,获得积分10
2分钟前
shelly7788完成签到 ,获得积分10
2分钟前
草木完成签到 ,获得积分20
3分钟前
小雨完成签到,获得积分10
3分钟前
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
完美世界应助科研通管家采纳,获得10
4分钟前
华仔应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
kyokyoro完成签到,获得积分10
6分钟前
mengliu完成签到,获得积分10
6分钟前
6分钟前
汉堡包应助科研通管家采纳,获得10
6分钟前
深情安青应助科研通管家采纳,获得10
6分钟前
6分钟前
123发布了新的文献求助10
6分钟前
杨怂怂完成签到 ,获得积分10
7分钟前
执着南琴发布了新的文献求助10
7分钟前
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
脑洞疼应助科研通管家采纳,获得10
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965713
求助须知:如何正确求助?哪些是违规求助? 3510941
关于积分的说明 11155657
捐赠科研通 3245401
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214