A customized adaptive large neighborhood search algorithm for solving a multi-objective home health care problem in a pandemic environment

计算机科学 启发式 工作量 帕累托原理 模拟退火 数学优化 启发式 多目标优化 约束规划 车辆路径问题 背景(考古学) 调度(生产过程) 解算器 运筹学 算法 人工智能 布线(电子设计自动化) 机器学习 随机规划 数学 操作系统 生物 古生物学 程序设计语言 计算机网络
作者
Wenheng Liu,Mahjoub Dridib,Amir M. Fathollahi-Fard,Amir Hajjam El Hassani
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:86: 101507-101507 被引量:3
标识
DOI:10.1016/j.swevo.2024.101507
摘要

This paper addresses a home health care routing and scheduling problem (HHCRSP) specifically focusing on the context of a pandemic environment. The investigated HHCRSP involves assigning appropriate caregivers to patients and optimizing caregiver routes while minimizing total travel costs, workload differences among caregivers, and negative patient preferences. The problem accounts for synchronized visits, lunch breaks, time windows, and special pandemic constraints (e.g., maximum total contact times for each caregiver and multi-trip routes). To our knowledge, this is the first study to address these constraints and goals simultaneously in the HHCRSP. To solve the problem, we propose a customized algorithm, AMOALNS, which combines archived multi-objective simulated annealing (AMOSA) with adaptive large neighborhood search (ALNS). Our AMOALNS generates a new solution iteratively through problem-specific heuristics within ALNS, employing a multi-objective optimization framework to intelligently disrupt and repair feasible solutions. The adaptive updating of heuristic weights is determined by the domination relation between the newly generated solution and non-dominated solutions stored in the archive of AMOSA. To show the performance of the AMOALNS through extensive experiments, we compare it with the epsilon constraint method and other state-of-the-art multi-objective algorithms in the literature. Additionally, we use Pareto front analysis to aid decision-makers in comprehending the shape of the Pareto front and making informed choices based on their preferences. The trade-off analysis shows that minimizing total travel costs is the hardest to achieve, and optimizing workload balancing is worthwhile. Also, most of the non-dominated solutions can simultaneously achieve low workload balancing and high preference of patients. Finally, the sensitivity analyses reveal that the time windows classifications and instances sizes have significant impact on the compromising solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
淡然元彤应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
汉堡包应助华北走地鸡采纳,获得10
3秒前
4秒前
8秒前
lkk发布了新的文献求助10
8秒前
QF发布了新的文献求助10
10秒前
xfy发布了新的文献求助10
11秒前
11秒前
13秒前
14秒前
冷酷纸飞机完成签到,获得积分20
15秒前
16秒前
16秒前
李健的小迷弟应助lkk采纳,获得10
17秒前
18秒前
许结朱陈完成签到 ,获得积分10
19秒前
19秒前
20秒前
23秒前
欢呼忆丹完成签到 ,获得积分10
24秒前
Anthony_潇发布了新的文献求助10
25秒前
Shirley完成签到,获得积分10
26秒前
26秒前
Anthony_潇完成签到,获得积分10
30秒前
ls完成签到,获得积分10
32秒前
xfy完成签到,获得积分10
32秒前
榴莲完成签到,获得积分10
33秒前
飞天猫完成签到,获得积分10
33秒前
PeGe完成签到,获得积分10
34秒前
34秒前
35秒前
35秒前
35秒前
稳重母鸡完成签到 ,获得积分10
36秒前
花园里的蒜完成签到 ,获得积分10
37秒前
大七完成签到 ,获得积分10
38秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242492
求助须知:如何正确求助?哪些是违规求助? 2886874
关于积分的说明 8245034
捐赠科研通 2555371
什么是DOI,文献DOI怎么找? 1383482
科研通“疑难数据库(出版商)”最低求助积分说明 649722
邀请新用户注册赠送积分活动 625554