质子导体
材料科学
质子
对偶(语法数字)
导电体
导线
工程物理
化学工程
核工程
纳米技术
燃料电池
复合材料
化学
电解质
电极
物理化学
核物理学
艺术
物理
工程类
文学类
作者
Li Wen,Wen Liu,Wentong Jia,Jin Zhang,Qi Zhang,Zhenguo Zhang,Jialin Zhang,Yunqi Li,Yiyang Liu,Haining Wang,Yan Xiang,Shanfu Lu
标识
DOI:10.1002/adma.202310584
摘要
Abstract The properties of proton conductors determine the operating temperature range of fuel cells. Typically, phosphoric acid (PA) proton conductors exhibit excellent proton conductivity owing to their high proton dissociation and self‐diffusion abilities. However, at low temperatures or high current densities, water‐induced PA loss causes rapid degradation of cell performance. Maintaining efficient and stable proton conductivity within a flexible temperature range can significantly reduce the start‐up temperature of PA‐doped proton exchange membrane fuel cells. In this study, a dual‐proton conductor composed of an organic phosphonic acid (ethylenediamine tetramethylene phosphonic acid, EDTMPA) and an inorganic PA is developed for proton exchange membranes. The proposed dual‐proton conductor can operate within a flexible temperature range of 80–160 °C, benefiting from the strong interaction between EDTMPA and PA, and the enhanced proton dissociation. Fuel cells with the EDTMPA‐PA dual‐proton conductor showed excellent cell stability at 80 °C. In particular, under the high current density of 1.5 A cm −2 at 160 °C, the voltage decay rate of the fuel cell with the dual‐proton conductor is one‐thousandth of that of the fuel cell with PA‐only proton conductor, indicating excellent stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI