Deep learning for automatic organ and tumor segmentation in nanomedicine pharmacokinetics

分割 计算机科学 人工智能 深度学习 纳米医学 医学影像学 药代动力学 剂量学 医学物理学 模式识别(心理学) 医学 核医学 药理学 材料科学 纳米颗粒 纳米技术
作者
Alex Dhaliwal,Jun Ma,Mark Zheng,Qing Lyu,Maneesha A. Rajora,Shihao Ma,Laura Oliva,Anthony Ku,Michael S. Valic,Bo Wang,Gang Zheng
出处
期刊:Theranostics [Ivyspring International Publisher]
卷期号:14 (3): 973-987 被引量:1
标识
DOI:10.7150/thno.90246
摘要

Rationale: Multimodal imaging provides important pharmacokinetic and dosimetry information during nanomedicine development and optimization.However, accurate quantitation is time-consuming, resource intensive, and requires anatomical expertise.Methods: We present NanoMASK: a 3D U-Net adapted deep learning tool capable of rapid, automatic organ segmentation of multimodal imaging data that can output key clinical dosimetry metrics without manual intervention.This model was trained on 355 manually-contoured PET/CT data volumes of mice injected with a variety of nanomaterials and imaged over 48 hours.Results: NanoMASK produced 3-dimensional contours of the heart, lungs, liver, spleen, kidneys, and tumor with high volumetric accuracy (pan-organ average %DSC of 92.5).Pharmacokinetic metrics including %ID/cc, %ID, and SUVmax achieved correlation coefficients exceeding R = 0.987 and relative mean errors below 0.2%.NanoMASK was applied to novel datasets of lipid nanoparticles and antibody-drug conjugates with a minimal drop in accuracy, illustrating its generalizability to different classes of nanomedicines.Furthermore, 20 additional auto-segmentation models were developed using training data subsets based on image modality, experimental imaging timepoint, and tumor status.These were used to explore the fundamental biases and dependencies of auto-segmentation models built on a 3D U-Net architecture, revealing significant differential impacts on organ segmentation accuracy.Conclusions: NanoMASK is an easy-to-use, adaptable tool for improving accuracy and throughput in imaging-based pharmacokinetic studies of nanomedicine.It has been made publicly available to all readers for automatic segmentation and pharmacokinetic analysis across a diverse array of nanoparticles, expediting agent development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
holi完成签到 ,获得积分10
1秒前
甜蜜冷风完成签到,获得积分10
3秒前
Feng完成签到 ,获得积分10
5秒前
谢谢给量子星尘的求助进行了留言
5秒前
霜风款冬完成签到,获得积分10
7秒前
h w wang完成签到,获得积分10
10秒前
枫叶完成签到,获得积分10
12秒前
12秒前
别闹闹完成签到 ,获得积分10
13秒前
shouz完成签到,获得积分10
14秒前
俏皮的老三完成签到 ,获得积分10
15秒前
LS完成签到,获得积分10
15秒前
丁丁完成签到,获得积分10
16秒前
有终完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
Felix完成签到 ,获得积分10
18秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
Akim应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得30
20秒前
耳东完成签到 ,获得积分10
20秒前
0109完成签到,获得积分10
21秒前
爱笑的鱼完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
小凯同学完成签到,获得积分10
23秒前
Cylair完成签到,获得积分10
24秒前
勤奋完成签到 ,获得积分10
24秒前
余春完成签到,获得积分10
24秒前
影像大侠完成签到,获得积分10
24秒前
面壁的章北海完成签到,获得积分10
27秒前
谢谢给量子星尘的求助进行了留言
27秒前
小橘子完成签到 ,获得积分10
27秒前
刘较瘦完成签到,获得积分10
31秒前
许自通完成签到,获得积分10
32秒前
Samuel98完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671581
求助须知:如何正确求助?哪些是违规求助? 4920068
关于积分的说明 15135054
捐赠科研通 4830410
什么是DOI,文献DOI怎么找? 2587061
邀请新用户注册赠送积分活动 1540682
关于科研通互助平台的介绍 1498986