Deep learning for automatic organ and tumor segmentation in nanomedicine pharmacokinetics

分割 计算机科学 人工智能 深度学习 纳米医学 医学影像学 药代动力学 剂量学 医学物理学 模式识别(心理学) 医学 核医学 药理学 材料科学 纳米颗粒 纳米技术
作者
Alex Dhaliwal,Jun Ma,Mark Zheng,Qing Lyu,Maneesha A. Rajora,Shihao Ma,Laura Oliva,Anthony Ku,Michael S. Valic,Bo Wang,Gang Zheng
出处
期刊:Theranostics [Ivyspring International Publisher]
卷期号:14 (3): 973-987 被引量:1
标识
DOI:10.7150/thno.90246
摘要

Rationale: Multimodal imaging provides important pharmacokinetic and dosimetry information during nanomedicine development and optimization.However, accurate quantitation is time-consuming, resource intensive, and requires anatomical expertise.Methods: We present NanoMASK: a 3D U-Net adapted deep learning tool capable of rapid, automatic organ segmentation of multimodal imaging data that can output key clinical dosimetry metrics without manual intervention.This model was trained on 355 manually-contoured PET/CT data volumes of mice injected with a variety of nanomaterials and imaged over 48 hours.Results: NanoMASK produced 3-dimensional contours of the heart, lungs, liver, spleen, kidneys, and tumor with high volumetric accuracy (pan-organ average %DSC of 92.5).Pharmacokinetic metrics including %ID/cc, %ID, and SUVmax achieved correlation coefficients exceeding R = 0.987 and relative mean errors below 0.2%.NanoMASK was applied to novel datasets of lipid nanoparticles and antibody-drug conjugates with a minimal drop in accuracy, illustrating its generalizability to different classes of nanomedicines.Furthermore, 20 additional auto-segmentation models were developed using training data subsets based on image modality, experimental imaging timepoint, and tumor status.These were used to explore the fundamental biases and dependencies of auto-segmentation models built on a 3D U-Net architecture, revealing significant differential impacts on organ segmentation accuracy.Conclusions: NanoMASK is an easy-to-use, adaptable tool for improving accuracy and throughput in imaging-based pharmacokinetic studies of nanomedicine.It has been made publicly available to all readers for automatic segmentation and pharmacokinetic analysis across a diverse array of nanoparticles, expediting agent development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小智完成签到,获得积分10
刚刚
tripper驳回了oh应助
2秒前
JamesPei应助顺心的之云采纳,获得10
3秒前
4秒前
神华完成签到,获得积分20
5秒前
韭菜盒子发布了新的文献求助10
6秒前
机智傀斗完成签到,获得积分0
6秒前
6秒前
老迟到的可兰完成签到 ,获得积分10
6秒前
不lex2之完成签到,获得积分10
6秒前
7秒前
8秒前
和谐的小懒猪完成签到,获得积分10
8秒前
8秒前
9秒前
天天快乐应助罗氏集团采纳,获得10
9秒前
研友_VZG7GZ应助柠柚萌不萌采纳,获得10
10秒前
shiwo110发布了新的文献求助10
12秒前
重要手机完成签到 ,获得积分10
12秒前
HUU发布了新的文献求助10
12秒前
zhh发布了新的文献求助10
13秒前
xyj完成签到,获得积分10
13秒前
13秒前
Ultraman完成签到,获得积分10
14秒前
可爱的函函应助罗氏集团采纳,获得10
15秒前
16秒前
16秒前
dongan发布了新的文献求助10
16秒前
念心发布了新的文献求助10
17秒前
战战兢兢完成签到 ,获得积分10
18秒前
Clark完成签到,获得积分10
18秒前
Mini33完成签到,获得积分10
18秒前
慕青应助XiaodongWang采纳,获得10
19秒前
领导范儿应助XiaodongWang采纳,获得10
19秒前
鸣笛应助XiaodongWang采纳,获得10
19秒前
Cyzou完成签到,获得积分10
20秒前
小二发布了新的文献求助10
20秒前
叶子发布了新的文献求助10
21秒前
赘婿应助HUU采纳,获得10
21秒前
搜集达人应助罗氏集团采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070