Deep learning for automatic organ and tumor segmentation in nanomedicine pharmacokinetics

分割 计算机科学 人工智能 深度学习 纳米医学 医学影像学 药代动力学 剂量学 医学物理学 模式识别(心理学) 医学 核医学 药理学 材料科学 纳米颗粒 纳米技术
作者
Alex Dhaliwal,Jun Ma,Mark Zheng,Qing Lyu,Maneesha A. Rajora,Shihao Ma,Laura Oliva,Anthony Ku,Michael S. Valic,Bo Wang,Gang Zheng
出处
期刊:Theranostics [Ivyspring International Publisher]
卷期号:14 (3): 973-987 被引量:1
标识
DOI:10.7150/thno.90246
摘要

Rationale: Multimodal imaging provides important pharmacokinetic and dosimetry information during nanomedicine development and optimization.However, accurate quantitation is time-consuming, resource intensive, and requires anatomical expertise.Methods: We present NanoMASK: a 3D U-Net adapted deep learning tool capable of rapid, automatic organ segmentation of multimodal imaging data that can output key clinical dosimetry metrics without manual intervention.This model was trained on 355 manually-contoured PET/CT data volumes of mice injected with a variety of nanomaterials and imaged over 48 hours.Results: NanoMASK produced 3-dimensional contours of the heart, lungs, liver, spleen, kidneys, and tumor with high volumetric accuracy (pan-organ average %DSC of 92.5).Pharmacokinetic metrics including %ID/cc, %ID, and SUVmax achieved correlation coefficients exceeding R = 0.987 and relative mean errors below 0.2%.NanoMASK was applied to novel datasets of lipid nanoparticles and antibody-drug conjugates with a minimal drop in accuracy, illustrating its generalizability to different classes of nanomedicines.Furthermore, 20 additional auto-segmentation models were developed using training data subsets based on image modality, experimental imaging timepoint, and tumor status.These were used to explore the fundamental biases and dependencies of auto-segmentation models built on a 3D U-Net architecture, revealing significant differential impacts on organ segmentation accuracy.Conclusions: NanoMASK is an easy-to-use, adaptable tool for improving accuracy and throughput in imaging-based pharmacokinetic studies of nanomedicine.It has been made publicly available to all readers for automatic segmentation and pharmacokinetic analysis across a diverse array of nanoparticles, expediting agent development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LMR完成签到,获得积分10
1秒前
hym发布了新的文献求助100
1秒前
Akim应助草莓味的榴莲采纳,获得10
2秒前
nightynight发布了新的文献求助10
3秒前
3秒前
天天快乐应助lijikj采纳,获得10
3秒前
任白993发布了新的文献求助10
4秒前
4秒前
小智发布了新的文献求助10
4秒前
5秒前
万能图书馆应助向前走采纳,获得10
5秒前
5秒前
lucky发布了新的文献求助10
6秒前
瓜娃虎发布了新的文献求助10
7秒前
xiang完成签到,获得积分10
7秒前
8秒前
inkyxia发布了新的文献求助10
8秒前
8秒前
呼呼呼发布了新的文献求助10
8秒前
不讲完成签到,获得积分10
9秒前
9秒前
sci完成签到,获得积分20
9秒前
大胆的八宝粥完成签到 ,获得积分10
10秒前
10秒前
XiQi完成签到,获得积分10
10秒前
10秒前
酷炫翠桃完成签到,获得积分10
10秒前
11秒前
yuchangkun发布了新的文献求助10
11秒前
12秒前
qin希望应助沉默寄风采纳,获得10
12秒前
12秒前
12秒前
ding应助科研小白采纳,获得10
13秒前
zriverm发布了新的文献求助10
13秒前
13秒前
刘金泽完成签到,获得积分10
14秒前
勿忘心安完成签到,获得积分10
14秒前
深耕发布了新的文献求助10
15秒前
16秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160558
求助须知:如何正确求助?哪些是违规求助? 2811730
关于积分的说明 7893251
捐赠科研通 2470605
什么是DOI,文献DOI怎么找? 1315658
科研通“疑难数据库(出版商)”最低求助积分说明 630920
版权声明 602042