Numerical investigation on improved spray system for efficient aerosol removal during the decommissioning of Fukushima Daiichi nuclear power plants

核退役 气溶胶 核工程 核能 环境科学 核电站 废物管理 工程类 核物理学 气象学 物理
作者
Ruicong Xu,Avadhesh Kumar Sharma,Erdal Ozdemir,Shuichiro Miwa,Shunichi Suzuki
出处
期刊:Nuclear Engineering and Design [Elsevier]
卷期号:419: 112960-112960 被引量:1
标识
DOI:10.1016/j.nucengdes.2024.112960
摘要

During decommissioning of the Fukushima Daiichi (1F) nuclear power plants, retrieving the solidified debris inside the reactors is a critical issue. Debris must be segmented using cutting techniques for retrieval by robots. However, these processes will generate submicron radioactive aerosol particles. Water spray system is considered as a useful technique for removing these aerosols. To investigate the optimization of the spray system for 1F decommissioning, this study conducts numerical simulations using Euler-Lagrange approach in STAR-CCM +. The evaluations focus on aerosol removal processes within our UTARTS facility under varying spray configurations. Our simulations consider the particle-laden gas and spray droplets in the continuous Eulerian phase and dispersed Lagrangian phase, respectively. Numerical models for aerosol scavenging through various mechanisms, including inertial impaction, diffusion, and interception, are developed and implemented. The characteristics of droplets and gas flow during spraying are investigated. With validation from experimental results, simulations incorporating newly designed virtual spray nozzles are analyzed for improved scavenging performance. The study suggests that an optimized combination of spray configurations may exist. The results from this study are expected to be beneficial for the improvement of spray system designs to efficiently scavenge aerosols during 1F decommissioning, thereby mitigating radioactivity release and minimizing the production of contaminated water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chengcheng完成签到,获得积分10
1秒前
愉快河马完成签到,获得积分10
2秒前
wanci应助沉默的不惜采纳,获得10
3秒前
linshunan完成签到 ,获得积分10
4秒前
ding应助Hao采纳,获得10
4秒前
5秒前
隐形曼青应助nanonamo采纳,获得10
7秒前
7秒前
wanci应助girl采纳,获得10
8秒前
猫只想发布了新的文献求助10
9秒前
10秒前
CodeCraft应助Wells采纳,获得10
10秒前
淡然茗茗完成签到,获得积分10
11秒前
gj发布了新的文献求助10
11秒前
可乐发布了新的文献求助10
11秒前
12秒前
12秒前
调皮傲易完成签到 ,获得积分10
12秒前
13秒前
13秒前
赵勇发布了新的文献求助10
14秒前
李健应助jianxin采纳,获得10
14秒前
14秒前
Hao发布了新的文献求助10
15秒前
Wells完成签到,获得积分10
17秒前
Hcollide发布了新的文献求助10
17秒前
淡然茗茗发布了新的文献求助10
17秒前
愉快河马发布了新的文献求助10
17秒前
18秒前
ZSWAA发布了新的文献求助10
18秒前
慕青应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得30
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
酷波er应助nanonamo采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
浅尝离白应助科研通管家采纳,获得20
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136088
求助须知:如何正确求助?哪些是违规求助? 2786988
关于积分的说明 7780038
捐赠科研通 2443085
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625262
版权声明 600870