A new evolutionary optimization algorithm with hybrid guidance mechanism for truck-multi drone delivery system

旅行商问题 计算机科学 局部搜索(优化) 数学优化 无人机 选择(遗传算法) 进化算法 过程(计算) 贪婪算法 车辆路径问题 布线(电子设计自动化) 算法 人工智能 数学 计算机网络 生物 遗传学 操作系统
作者
Cemal Yılmaz,Enes Cengiz,Hamdi Tolga Kahraman
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:245: 123115-123115 被引量:6
标识
DOI:10.1016/j.eswa.2023.123115
摘要

Synchronization of the Traveling Salesman Problem with Drone (TSP-D) is one of the most complex NP-hard combinatorial routing problems in the literature. The speeds, capacities and optimization constraints of the truck-drone pair are different from each other. These differences lead to the search space of TSP-D having a high geometric complexity and a large number of local solution traps. Being able to avoid local solution traps in the search space of TSP-D and accurately converge to the global optimal solution is the main challenge for evolutionary search algorithms. The way to overcome this challenge is to dynamically adapt exploitation and exploration behaviors during the search process and maintain these two in a balanced manner depending on the geometric structure of TSP-D's search space. To overcome this challenge, research consisting of three steps was conducted in this article: (i) three different guide selection methods, namely greedy, random and FDB-score based, were used to provide exploitation, exploration and balanced search capabilities, (ii) by hybridizing these three methods at different rates, guide selection strategies with different search capabilities were developed, (iii) by associating these hybrid guide selection strategies with different stages of the search process, the guidance mechanism was given a dynamic behavioral ability. Thus, the Fitness-Distance Balance-based evolutionary search algorithm (FDB-EA) was designed to achieve a sustainable exploitation-exploration balance in the search space of TSP-D and stably avoid local solution traps. To test the performance of the FDB-EA, the number of delivery points was set to 30, 50, 60, 80, and 100 and compared with twenty-seven powerful and current competing algorithms. According to the non-parametric Wilcoxon pairwise comparison results, FDB-EA outperformed all competing algorithms in all five different TSP-D problems. According to the results obtained from the stability analysis, the success rates and calculation times of FDB-EA, EA and AGDE algorithms were 88.00% (6308.79 sec), 58.40% (7377.43 sec) and 13.460% (34664.19 sec) respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助小巧老鼠采纳,获得10
2秒前
zzz完成签到,获得积分10
2秒前
ding应助Amber采纳,获得10
2秒前
2秒前
kk发布了新的文献求助10
3秒前
香蕉觅云应助xianglinnnn采纳,获得30
3秒前
funny完成签到,获得积分10
3秒前
3秒前
弩弩hannah完成签到,获得积分10
4秒前
传奇3应助wuxiulin采纳,获得10
5秒前
5秒前
苹果鸭子完成签到,获得积分20
8秒前
翁醉山发布了新的文献求助10
8秒前
充电宝应助皮PP采纳,获得10
8秒前
冷静无心发布了新的文献求助10
8秒前
9秒前
FKHY应助灯灯采纳,获得10
9秒前
小李新人完成签到 ,获得积分10
9秒前
opticsLM完成签到,获得积分10
9秒前
abc123发布了新的文献求助10
10秒前
张小愚应助研友_VZG64n采纳,获得10
11秒前
典雅的俊驰应助朱梦园采纳,获得30
12秒前
树呀完成签到,获得积分10
12秒前
12秒前
orixero应助黄景瑜采纳,获得10
13秒前
zcs发布了新的文献求助10
13秒前
13秒前
Crystal发布了新的文献求助10
14秒前
顾矜应助树呀采纳,获得10
15秒前
科研麻瓜发布了新的文献求助10
16秒前
17秒前
地表飞猪举报kkyy求助涉嫌违规
17秒前
小蘑菇应助Mansis采纳,获得50
18秒前
海风吹完成签到,获得积分10
18秒前
翁沛山完成签到 ,获得积分10
18秒前
小珠发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
黄景瑜完成签到,获得积分20
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958345
求助须知:如何正确求助?哪些是违规求助? 3504604
关于积分的说明 11118997
捐赠科研通 3235815
什么是DOI,文献DOI怎么找? 1788530
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600