A new evolutionary optimization algorithm with hybrid guidance mechanism for truck-multi drone delivery system

旅行商问题 计算机科学 局部搜索(优化) 数学优化 无人机 选择(遗传算法) 进化算法 过程(计算) 贪婪算法 车辆路径问题 布线(电子设计自动化) 算法 人工智能 数学 生物 操作系统 遗传学 计算机网络
作者
Cemal Yılmaz,Enes Cengiz,Hamdi Tolga Kahraman
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:245: 123115-123115 被引量:6
标识
DOI:10.1016/j.eswa.2023.123115
摘要

Synchronization of the Traveling Salesman Problem with Drone (TSP-D) is one of the most complex NP-hard combinatorial routing problems in the literature. The speeds, capacities and optimization constraints of the truck-drone pair are different from each other. These differences lead to the search space of TSP-D having a high geometric complexity and a large number of local solution traps. Being able to avoid local solution traps in the search space of TSP-D and accurately converge to the global optimal solution is the main challenge for evolutionary search algorithms. The way to overcome this challenge is to dynamically adapt exploitation and exploration behaviors during the search process and maintain these two in a balanced manner depending on the geometric structure of TSP-D's search space. To overcome this challenge, research consisting of three steps was conducted in this article: (i) three different guide selection methods, namely greedy, random and FDB-score based, were used to provide exploitation, exploration and balanced search capabilities, (ii) by hybridizing these three methods at different rates, guide selection strategies with different search capabilities were developed, (iii) by associating these hybrid guide selection strategies with different stages of the search process, the guidance mechanism was given a dynamic behavioral ability. Thus, the Fitness-Distance Balance-based evolutionary search algorithm (FDB-EA) was designed to achieve a sustainable exploitation-exploration balance in the search space of TSP-D and stably avoid local solution traps. To test the performance of the FDB-EA, the number of delivery points was set to 30, 50, 60, 80, and 100 and compared with twenty-seven powerful and current competing algorithms. According to the non-parametric Wilcoxon pairwise comparison results, FDB-EA outperformed all competing algorithms in all five different TSP-D problems. According to the results obtained from the stability analysis, the success rates and calculation times of FDB-EA, EA and AGDE algorithms were 88.00% (6308.79 sec), 58.40% (7377.43 sec) and 13.460% (34664.19 sec) respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QQQQ发布了新的文献求助20
刚刚
zy完成签到 ,获得积分10
刚刚
坦率若颜发布了新的文献求助10
4秒前
terence应助YYJ25采纳,获得10
5秒前
7秒前
9秒前
9秒前
JianminLuo完成签到 ,获得积分10
10秒前
慌糖发布了新的文献求助10
10秒前
贪玩语蓉完成签到,获得积分10
11秒前
12秒前
heidi发布了新的文献求助10
13秒前
13秒前
CipherSage应助昵称采纳,获得10
13秒前
所得皆所愿完成签到 ,获得积分10
13秒前
英俊的铭应助浙江嘉兴采纳,获得10
15秒前
caoyy发布了新的文献求助10
16秒前
18秒前
花陵完成签到 ,获得积分10
18秒前
田様应助youjiang采纳,获得10
18秒前
lixm发布了新的文献求助10
19秒前
20秒前
春眠不觉小小酥完成签到,获得积分10
21秒前
21秒前
21秒前
JerryZ发布了新的文献求助10
22秒前
22秒前
wewe发布了新的文献求助30
25秒前
昵称发布了新的文献求助10
25秒前
26秒前
hdd完成签到,获得积分10
26秒前
irisjlj发布了新的文献求助10
26秒前
有人应助科研通管家采纳,获得10
28秒前
orixero应助科研通管家采纳,获得10
28秒前
SCINEXUS应助科研通管家采纳,获得10
28秒前
深情安青应助科研通管家采纳,获得10
28秒前
SCINEXUS应助科研通管家采纳,获得20
28秒前
子夜应助科研通管家采纳,获得10
28秒前
赘婿应助科研通管家采纳,获得10
28秒前
共享精神应助科研通管家采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851