层状双氢氧化物
插层(化学)
吸附
离子交换
无机化学
溶解
离子
氯化物
化学
结合能
化学工程
材料科学
有机化学
物理
核物理学
工程类
作者
Zhipeng Xu,Yuchen Wu,Zhangmin Zhang,Yangyang Wang,Jie Hu,Yuwei Ma,Zuhua Zhang,Haoliang Huang,Jiangxiong Wei,Caijun Shi,Qijun Yu
标识
DOI:10.1016/j.cemconcomp.2024.105433
摘要
Cl− adsorption and intercalated ions release processes during LDHs are highly intricate phenomena. In this study, ion exchange performance of LDHs with specific cation interlayers and intercalated anions (CaAl–NO3-LDHs, CaAl–NO2-LDHs, CaFeAl–NO3-LDHs and CaFeAl–NO2-LDHs) were extensively investigated. The results indicate that in the presence of low chloride concentration, the intercalated anions are prematurely released due to partial dissolution of LDHs in neutral deionized water and ion exchange with OH− in alkaline simulated concrete pore solution. Therefore, Cl− adsorption of LDHs and release process of intercalated anions in LDHs are not completely synchronized. Compared to partial LDHs dissolution, the accelerating effect of OH− exchange on intercalated anion release in simulated concrete pore solution is more pronounced. Further, higher stability of LDHs in testing solutions is mainly corresponding to higher binding energy between intercalation ions and cation interlayers, thus saturated Cl− adsorption content of NO3-LDHs with high binding energy is higher than NO2-LDHs with low binding energy, and saturated Cl− adsorption content of CaAl-LDHs with high binding energy is higher than CaFeAl-LDHs with low binding energy in testing solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI