Spatial–spectral–temporal deep regression model with convolutional long short-term memory and transformer for the large-area mapping of mangrove canopy height by using Sentinel-1 and Sentinel-2 data

遥感 天蓬 高光谱成像 均方误差 环境科学 数学 统计 地理 考古
作者
Ilham Jamaluddin,Y. I. Chen,Kuo‐Chin Fan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:2
标识
DOI:10.1109/tgrs.2024.3362788
摘要

Mangrove canopy height information is crucial to carbon stock and biomass analyses. However, estimation of this height is challenging because of large areas involved, and field conditions of mangrove forests. Remote sensing satellite imagery has been used for canopy height mapping because it offers several advantages. This study developed a spatial–spectral–temporal deep learning regression model with convolutional long short-term memory (ConvLSTM) and transformer (hereafter referred to as the SST-CLT model) to map mangrove canopy height over large area. The SST-CLT model consists of two sub-models trained simultaneously. The first sub-model is fusion extractor to extracts spatial–spectral–temporal information from Sentinel-1 time-series data by using a ConvLSTM. It also extracts spatial–spectral information from Sentinel-2 data using a two-dimensional convolutional block. The second sub-model is a regressor contains Swin transformer and final convolutional regression layer. Data from light detection and ranging canopy height model were employed as the target data to train the proposed model. The SST-CLT model was tested on two datasets collected from Florida: large dataset for the Everglades National Park (ENP) and small dataset for the Charlotte Harbor Preserve State Park (CHPSP). The SST-CLT model achieved a mean absolute error (MAE) of 1.924 and 1.913 m for the ENP and CHPSP datasets, respectively. Moreover, it achieved root mean square error (RMSE) values of 2.471 and 2.440 m for these datasets, respectively. The SST-CLT model was compared with that of other regression models. The results indicated that the MAE and RMSE of the proposed SST-CLT were lower than those of the other models. https://github.com/ilhamjamal/SST-CLT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leon完成签到,获得积分10
刚刚
Cupid完成签到,获得积分10
1秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
我是老大应助刘骁萱采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
深情安青应助涳域采纳,获得10
9秒前
暗中讨饭应助我爱科研采纳,获得10
9秒前
10秒前
10秒前
11秒前
23完成签到,获得积分10
11秒前
一只羊完成签到 ,获得积分10
11秒前
安静发布了新的文献求助10
12秒前
db完成签到,获得积分10
14秒前
14秒前
脑洞疼应助xsc采纳,获得10
14秒前
薯仔完成签到,获得积分10
15秒前
隐形曼青应助我爱科研采纳,获得10
15秒前
zhouyu发布了新的文献求助10
15秒前
15秒前
nneuuv88发布了新的文献求助10
15秒前
Yuanyuan发布了新的文献求助10
16秒前
18秒前
hui发布了新的文献求助10
18秒前
THEFAN发布了新的文献求助10
19秒前
19秒前
Orange应助优美紫槐采纳,获得10
19秒前
星辰大海应助学生采纳,获得10
20秒前
22发布了新的文献求助10
20秒前
hsa_ID发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
爬起来学习应助香蕉妙菡采纳,获得10
20秒前
21秒前
蓓蓓发布了新的文献求助10
23秒前
23秒前
24秒前
华仔应助弦瑜采纳,获得10
24秒前
我是老大应助JamesYang采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729406
求助须知:如何正确求助?哪些是违规求助? 5317854
关于积分的说明 15316486
捐赠科研通 4876367
什么是DOI,文献DOI怎么找? 2619340
邀请新用户注册赠送积分活动 1568891
关于科研通互助平台的介绍 1525420