清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Spatial–spectral–temporal deep regression model with convolutional long short-term memory and transformer for the large-area mapping of mangrove canopy height by using Sentinel-1 and Sentinel-2 data

遥感 天蓬 高光谱成像 均方误差 环境科学 数学 统计 地理 考古
作者
Ilham Jamaluddin,Y. I. Chen,Kuo‐Chin Fan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:2
标识
DOI:10.1109/tgrs.2024.3362788
摘要

Mangrove canopy height information is crucial to carbon stock and biomass analyses. However, estimation of this height is challenging because of large areas involved, and field conditions of mangrove forests. Remote sensing satellite imagery has been used for canopy height mapping because it offers several advantages. This study developed a spatial–spectral–temporal deep learning regression model with convolutional long short-term memory (ConvLSTM) and transformer (hereafter referred to as the SST-CLT model) to map mangrove canopy height over large area. The SST-CLT model consists of two sub-models trained simultaneously. The first sub-model is fusion extractor to extracts spatial–spectral–temporal information from Sentinel-1 time-series data by using a ConvLSTM. It also extracts spatial–spectral information from Sentinel-2 data using a two-dimensional convolutional block. The second sub-model is a regressor contains Swin transformer and final convolutional regression layer. Data from light detection and ranging canopy height model were employed as the target data to train the proposed model. The SST-CLT model was tested on two datasets collected from Florida: large dataset for the Everglades National Park (ENP) and small dataset for the Charlotte Harbor Preserve State Park (CHPSP). The SST-CLT model achieved a mean absolute error (MAE) of 1.924 and 1.913 m for the ENP and CHPSP datasets, respectively. Moreover, it achieved root mean square error (RMSE) values of 2.471 and 2.440 m for these datasets, respectively. The SST-CLT model was compared with that of other regression models. The results indicated that the MAE and RMSE of the proposed SST-CLT were lower than those of the other models. https://github.com/ilhamjamal/SST-CLT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭德久完成签到 ,获得积分0
7秒前
成就的绮南完成签到 ,获得积分20
9秒前
50秒前
1分钟前
菠萝包完成签到 ,获得积分10
1分钟前
byyyy完成签到,获得积分10
1分钟前
GingerF应助科研通管家采纳,获得30
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
wang5945完成签到 ,获得积分10
2分钟前
Ji完成签到,获得积分10
2分钟前
2分钟前
2分钟前
hongtao发布了新的文献求助10
2分钟前
2分钟前
领导范儿应助夕阳醉了采纳,获得10
2分钟前
洁白的故人完成签到 ,获得积分10
3分钟前
3分钟前
夕阳醉了发布了新的文献求助10
3分钟前
滕皓轩完成签到 ,获得积分20
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
研友_892kOL发布了新的文献求助10
4分钟前
4分钟前
xx发布了新的文献求助10
5分钟前
实力不允许完成签到 ,获得积分0
5分钟前
lixuebin完成签到 ,获得积分10
5分钟前
NexusExplorer应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
vbnn完成签到 ,获得积分10
6分钟前
6分钟前
liuyamei完成签到,获得积分10
6分钟前
优秀的dd完成签到 ,获得积分10
6分钟前
liuyamei发布了新的文献求助10
6分钟前
眼睛大的电脑完成签到 ,获得积分10
6分钟前
6分钟前
刘刘完成签到 ,获得积分10
7分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965722
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155723
捐赠科研通 3245436
什么是DOI,文献DOI怎么找? 1792903
邀请新用户注册赠送积分活动 874184
科研通“疑难数据库(出版商)”最低求助积分说明 804229