Spatial–spectral–temporal deep regression model with convolutional long short-term memory and transformer for the large-area mapping of mangrove canopy height by using Sentinel-1 and Sentinel-2 data

遥感 天蓬 高光谱成像 均方误差 环境科学 数学 统计 地理 考古
作者
Ilham Jamaluddin,Y. I. Chen,Kuo‐Chin Fan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:2
标识
DOI:10.1109/tgrs.2024.3362788
摘要

Mangrove canopy height information is crucial to carbon stock and biomass analyses. However, estimation of this height is challenging because of large areas involved, and field conditions of mangrove forests. Remote sensing satellite imagery has been used for canopy height mapping because it offers several advantages. This study developed a spatial–spectral–temporal deep learning regression model with convolutional long short-term memory (ConvLSTM) and transformer (hereafter referred to as the SST-CLT model) to map mangrove canopy height over large area. The SST-CLT model consists of two sub-models trained simultaneously. The first sub-model is fusion extractor to extracts spatial–spectral–temporal information from Sentinel-1 time-series data by using a ConvLSTM. It also extracts spatial–spectral information from Sentinel-2 data using a two-dimensional convolutional block. The second sub-model is a regressor contains Swin transformer and final convolutional regression layer. Data from light detection and ranging canopy height model were employed as the target data to train the proposed model. The SST-CLT model was tested on two datasets collected from Florida: large dataset for the Everglades National Park (ENP) and small dataset for the Charlotte Harbor Preserve State Park (CHPSP). The SST-CLT model achieved a mean absolute error (MAE) of 1.924 and 1.913 m for the ENP and CHPSP datasets, respectively. Moreover, it achieved root mean square error (RMSE) values of 2.471 and 2.440 m for these datasets, respectively. The SST-CLT model was compared with that of other regression models. The results indicated that the MAE and RMSE of the proposed SST-CLT were lower than those of the other models. https://github.com/ilhamjamal/SST-CLT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助是妳采纳,获得30
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
3秒前
小二郎应助踏实青槐采纳,获得10
3秒前
科研小菜鸟完成签到,获得积分10
3秒前
jonghuang发布了新的文献求助10
4秒前
5秒前
6秒前
酷波er应助黄黄采纳,获得30
7秒前
风清扬发布了新的文献求助10
7秒前
Eon发布了新的文献求助10
7秒前
科研通AI2S应助happiness采纳,获得10
8秒前
复杂毛衣发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
彭于晏应助王木木采纳,获得10
11秒前
cloe完成签到,获得积分20
11秒前
favor发布了新的文献求助10
11秒前
12秒前
qian完成签到,获得积分10
12秒前
ming发布了新的文献求助10
12秒前
L1关闭了L1文献求助
12秒前
13秒前
13秒前
13秒前
天天完成签到 ,获得积分10
14秒前
稳重十三完成签到,获得积分10
14秒前
所所应助菠萝采纳,获得10
15秒前
15秒前
16秒前
17秒前
科研通AI6应助我爱吃肉采纳,获得10
17秒前
18秒前
lin完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
sunny发布了新的文献求助10
19秒前
羊大侠发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598629
求助须知:如何正确求助?哪些是违规求助? 4684062
关于积分的说明 14833541
捐赠科研通 4664247
什么是DOI,文献DOI怎么找? 2537306
邀请新用户注册赠送积分活动 1504899
关于科研通互助平台的介绍 1470593