Spatial–spectral–temporal deep regression model with convolutional long short-term memory and transformer for the large-area mapping of mangrove canopy height by using Sentinel-1 and Sentinel-2 data

遥感 天蓬 高光谱成像 均方误差 环境科学 数学 统计 地理 考古
作者
Ilham Jamaluddin,Y. I. Chen,Kuo‐Chin Fan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:2
标识
DOI:10.1109/tgrs.2024.3362788
摘要

Mangrove canopy height information is crucial to carbon stock and biomass analyses. However, estimation of this height is challenging because of large areas involved, and field conditions of mangrove forests. Remote sensing satellite imagery has been used for canopy height mapping because it offers several advantages. This study developed a spatial–spectral–temporal deep learning regression model with convolutional long short-term memory (ConvLSTM) and transformer (hereafter referred to as the SST-CLT model) to map mangrove canopy height over large area. The SST-CLT model consists of two sub-models trained simultaneously. The first sub-model is fusion extractor to extracts spatial–spectral–temporal information from Sentinel-1 time-series data by using a ConvLSTM. It also extracts spatial–spectral information from Sentinel-2 data using a two-dimensional convolutional block. The second sub-model is a regressor contains Swin transformer and final convolutional regression layer. Data from light detection and ranging canopy height model were employed as the target data to train the proposed model. The SST-CLT model was tested on two datasets collected from Florida: large dataset for the Everglades National Park (ENP) and small dataset for the Charlotte Harbor Preserve State Park (CHPSP). The SST-CLT model achieved a mean absolute error (MAE) of 1.924 and 1.913 m for the ENP and CHPSP datasets, respectively. Moreover, it achieved root mean square error (RMSE) values of 2.471 and 2.440 m for these datasets, respectively. The SST-CLT model was compared with that of other regression models. The results indicated that the MAE and RMSE of the proposed SST-CLT were lower than those of the other models. https://github.com/ilhamjamal/SST-CLT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
温柔的语柔完成签到,获得积分10
1秒前
欣慰立轩完成签到,获得积分20
2秒前
传统的大白完成签到,获得积分10
2秒前
苹果小蜜蜂完成签到,获得积分10
2秒前
所所应助土豆淀粉采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
4秒前
Chaha应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
zhonglv7应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
Owen应助科研通管家采纳,获得10
5秒前
zhonglv7应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
纯真忆安发布了新的文献求助10
7秒前
8秒前
有点儿微胖完成签到,获得积分10
9秒前
细心天德完成签到,获得积分10
9秒前
9秒前
开放幻丝发布了新的文献求助10
9秒前
ntrip完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304775
求助须知:如何正确求助?哪些是违规求助? 4451039
关于积分的说明 13850712
捐赠科研通 4338311
什么是DOI,文献DOI怎么找? 2381834
邀请新用户注册赠送积分活动 1376922
关于科研通互助平台的介绍 1344282