已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatial–spectral–temporal deep regression model with convolutional long short-term memory and transformer for the large-area mapping of mangrove canopy height by using Sentinel-1 and Sentinel-2 data

遥感 天蓬 高光谱成像 均方误差 环境科学 数学 统计 地理 考古
作者
Ilham Jamaluddin,Y. I. Chen,Kuo‐Chin Fan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:2
标识
DOI:10.1109/tgrs.2024.3362788
摘要

Mangrove canopy height information is crucial to carbon stock and biomass analyses. However, estimation of this height is challenging because of large areas involved, and field conditions of mangrove forests. Remote sensing satellite imagery has been used for canopy height mapping because it offers several advantages. This study developed a spatial–spectral–temporal deep learning regression model with convolutional long short-term memory (ConvLSTM) and transformer (hereafter referred to as the SST-CLT model) to map mangrove canopy height over large area. The SST-CLT model consists of two sub-models trained simultaneously. The first sub-model is fusion extractor to extracts spatial–spectral–temporal information from Sentinel-1 time-series data by using a ConvLSTM. It also extracts spatial–spectral information from Sentinel-2 data using a two-dimensional convolutional block. The second sub-model is a regressor contains Swin transformer and final convolutional regression layer. Data from light detection and ranging canopy height model were employed as the target data to train the proposed model. The SST-CLT model was tested on two datasets collected from Florida: large dataset for the Everglades National Park (ENP) and small dataset for the Charlotte Harbor Preserve State Park (CHPSP). The SST-CLT model achieved a mean absolute error (MAE) of 1.924 and 1.913 m for the ENP and CHPSP datasets, respectively. Moreover, it achieved root mean square error (RMSE) values of 2.471 and 2.440 m for these datasets, respectively. The SST-CLT model was compared with that of other regression models. The results indicated that the MAE and RMSE of the proposed SST-CLT were lower than those of the other models. https://github.com/ilhamjamal/SST-CLT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得20
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
传奇3应助GGGGEEEE采纳,获得10
2秒前
4秒前
领导范儿应助超级路人采纳,获得10
6秒前
啊倦发布了新的文献求助10
8秒前
youziyou发布了新的文献求助10
8秒前
enchanted完成签到 ,获得积分10
9秒前
mmmmmmgm完成签到 ,获得积分10
10秒前
11秒前
ouyang完成签到,获得积分20
12秒前
一一完成签到,获得积分10
13秒前
繁荣的勒完成签到,获得积分10
14秒前
youziyou完成签到,获得积分10
15秒前
16秒前
深情安青应助氼乚采纳,获得10
16秒前
17秒前
卢11完成签到,获得积分20
17秒前
繁荣的勒发布了新的文献求助30
21秒前
Milou发布了新的文献求助10
22秒前
氼乚完成签到,获得积分10
24秒前
25秒前
28秒前
氼乚发布了新的文献求助10
29秒前
HY发布了新的文献求助10
32秒前
俊逸的问薇完成签到 ,获得积分10
36秒前
慕斯完成签到,获得积分10
42秒前
CipherSage应助Ekkoye采纳,获得10
43秒前
45秒前
子月之路完成签到,获得积分10
45秒前
___淡完成签到 ,获得积分10
45秒前
飞鱼z完成签到,获得积分10
47秒前
B612小行星完成签到 ,获得积分10
49秒前
HY发布了新的文献求助10
50秒前
51秒前
SciGPT应助迷你的水绿采纳,获得10
52秒前
子车茗应助氼乚采纳,获得30
52秒前
52秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310983
求助须知:如何正确求助?哪些是违规求助? 2943826
关于积分的说明 8516538
捐赠科研通 2619121
什么是DOI,文献DOI怎么找? 1432072
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649802