Ultralong Cycling and Safe Lithium–Sulfur Pouch Cells for Sustainable Energy Storage

材料科学 自行车 储能 锂(药物) 纳米技术 硫黄 化学工程 冶金 历史 医学 功率(物理) 物理 考古 工程类 量子力学 内分泌学
作者
Wei Chen,Yin Hu,Yuanpeng Liu,Shuying Wang,Anjun Hu,Tianyu Lei,Yaoyao Li,Peng Li,Dongjiang Chen,Xia Li,Lanxin Xue,Yichao Yan,Gongxun Lu,Mingjie Zhou,Yuxin Fan,Hui Yang,Xinyong Tao,Xianfu Wang,Yanrong Li,Jie Xiong
出处
期刊:Advanced Materials [Wiley]
卷期号:36 (21) 被引量:16
标识
DOI:10.1002/adma.202312880
摘要

Abstract While layered metal oxides remain the dominant cathode materials for the state‐of‐the‐art lithium‐ion batteries, conversion‐type cathodes such as sulfur present unique opportunities in developing cheaper, safer, and more energy‐dense next‐generation battery technologies. There has been remarkable progress in advancing the laboratory scale lithium–sulfur (Li–S) coin cells to a high level of performance. However, the relevant strategies cannot be readily translated to practical cell formats such as pouch cells and even battery pack. Here these key technical challenges are addressed by molecular engineering of the Li metal for hydrophobicization, fluorination and thus favorable anode chemistry. The introduced tris(2,4‐di‐tert‐butylphenyl) phosphite (TBP) and tetrabutylammonium fluoride (TBA + F − ) as well as cellulose membrane by rolling enables the formation of a functional thin layer that eliminates the vulnerability of Li metal towards the already demanding environment required (1.55% relative humidity) for cell production and gives rise to LiF‐rich solid electrolyte interphase (SEI) to suppress dendrite growth. As a result, Li–S pouch cells assembled at a pilot production line survive 400 full charge/discharge cycles with an average Coulombic efficiency of 99.55% and impressive rate performance of 1.5 C. A cell‐level energy density of 417 Wh kg −1 and power density of 2766 W kg −1 are also delivered via multilayer Li–S pouch cell. The Li–S battery pack can even power an unmanned aerial vehicle of 3 kg for a fairly long flight time. This work represents a big step forward acceleration in Li–S battery marketization for future energy storage featuring improved safety, sustainability, higher energy density as well as reduced cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助圈圈采纳,获得10
1秒前
时尚的蚂蚁完成签到,获得积分10
1秒前
流年完成签到 ,获得积分10
1秒前
MADKAI发布了新的文献求助10
1秒前
xunxunmimi完成签到,获得积分10
2秒前
2秒前
2秒前
刘星星发布了新的文献求助10
3秒前
CodeCraft应助科研菜鸟采纳,获得20
3秒前
zyyyyyyyyyyy完成签到,获得积分10
4秒前
5秒前
研友_8yN60L发布了新的文献求助30
5秒前
打打应助柳七采纳,获得10
6秒前
零零二完成签到 ,获得积分10
6秒前
韭菜盒子发布了新的文献求助10
7秒前
Maestro_S完成签到,获得积分0
7秒前
volzzz发布了新的文献求助10
7秒前
wgglegg完成签到,获得积分10
7秒前
科研通AI5应助小胖鱼采纳,获得10
7秒前
酷波er应助黄超采纳,获得10
7秒前
7秒前
大智若愚啊完成签到,获得积分20
7秒前
8秒前
8秒前
8秒前
彬彬发布了新的文献求助10
8秒前
健壮丹妗完成签到 ,获得积分10
8秒前
Orange应助铸一字错采纳,获得10
8秒前
8秒前
Accept应助阿烨采纳,获得10
10秒前
欧阳小枫发布了新的文献求助10
11秒前
12秒前
Heidi完成签到 ,获得积分10
12秒前
见雨鱼发布了新的文献求助10
12秒前
学术扛把子完成签到 ,获得积分10
12秒前
Lucas应助陈某某采纳,获得10
12秒前
尊敬的钥匙完成签到,获得积分10
13秒前
14秒前
14秒前
赘婿应助无情的白桃采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740