KBStyle: Fast Style Transfer Using a 200 KB Network With Symmetric Knowledge Distillation

蒸馏 计算机科学 风格(视觉艺术) 人工智能 色谱法 化学 考古 历史
作者
Wenshu Chen,Yujie Huang,Mingyu Wang,Xiaolin Wu,Xiaoyang Zeng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 82-94
标识
DOI:10.1109/tip.2023.3335828
摘要

Convolutional Neural Networks (CNNs) have achieved remarkable progress in arbitrary artistic style transfer. However, the model size of existing state-of-the-art (SOTA) style transfer algorithms is immense, leading to enormous computational costs and memory demand. It makes real-time and high resolution hard for GPUs with limited memory and limits the application on mobile devices. This paper proposes a novel arbitrary artistic style transfer algorithm, KBStyle, whose model size is only 200 KB. Firstly, we design a style transfer network where the style encoder, content encoder, and corresponding decoder are custom designed to guarantee low computational cost and high shape retention. Besides, the weighted style loss function is presented to improve the performance of style migration. Then, we propose a novel knowledge distillation method (Symmetric Knowledge Distillation, SKD) for encoder-decoder-based style transfer models, which redefines the knowledge and symmetrically compresses the encoder and decoder. With the SKD, the proposed style transfer network is further compressed by 14 times to achieve the KBStyle. Experimental results demonstrate that the proposed SKD method achieves comparable results with other SOTA knowledge distillation algorithms for style transfer. Besides, the proposed KBStyle achieves high-quality stylized images. And the inference time of the KBStyle on an Nvidia TITAN RTX GPU is only 20 ms when the resolutions of the content image and style image are both 2k-resolution ( 2048×1080 ). Moreover, the 200 KB model size of KBStyle is much smaller than the SOTA models and facilitates style transfer on mobile devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小鹏哥完成签到,获得积分10
刚刚
lzb发布了新的文献求助10
刚刚
布鲁斯盖完成签到,获得积分10
刚刚
joyidyll发布了新的文献求助10
1秒前
1秒前
2秒前
小二郎应助www采纳,获得10
2秒前
3秒前
4秒前
天天快乐应助安详三问采纳,获得10
4秒前
自然背包完成签到,获得积分10
5秒前
6秒前
6秒前
周百成发布了新的文献求助10
7秒前
Ijaz完成签到,获得积分10
7秒前
7秒前
7秒前
李健的小迷弟应助joyidyll采纳,获得10
7秒前
erdongsir发布了新的文献求助10
8秒前
李若暄发布了新的文献求助10
8秒前
9秒前
Jasper应助收手吧大哥采纳,获得30
11秒前
快乐发布了新的文献求助10
11秒前
调皮万怨发布了新的文献求助10
11秒前
研友_ZGAWYL发布了新的文献求助10
11秒前
小蜗发布了新的文献求助30
11秒前
RY发布了新的文献求助10
12秒前
饱满的土豆完成签到,获得积分10
12秒前
lzb完成签到,获得积分10
13秒前
小胡发布了新的文献求助10
13秒前
彭于晏应助Emma采纳,获得10
15秒前
15秒前
16秒前
belssingoo发布了新的文献求助10
17秒前
17秒前
零容忍完成签到,获得积分10
17秒前
调皮万怨完成签到,获得积分10
19秒前
今后应助科研专家采纳,获得10
19秒前
123完成签到,获得积分10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962022
求助须知:如何正确求助?哪些是违规求助? 3508316
关于积分的说明 11140304
捐赠科研通 3240919
什么是DOI,文献DOI怎么找? 1791125
邀请新用户注册赠送积分活动 872741
科研通“疑难数据库(出版商)”最低求助积分说明 803352