KBStyle: Fast Style Transfer Using a 200 KB Network With Symmetric Knowledge Distillation

蒸馏 计算机科学 风格(视觉艺术) 人工智能 色谱法 化学 考古 历史
作者
Wenshu Chen,Yujie Huang,Mingyu Wang,Xiaolin Wu,Xiaoyang Zeng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 82-94
标识
DOI:10.1109/tip.2023.3335828
摘要

Convolutional Neural Networks (CNNs) have achieved remarkable progress in arbitrary artistic style transfer. However, the model size of existing state-of-the-art (SOTA) style transfer algorithms is immense, leading to enormous computational costs and memory demand. It makes real-time and high resolution hard for GPUs with limited memory and limits the application on mobile devices. This paper proposes a novel arbitrary artistic style transfer algorithm, KBStyle, whose model size is only 200 KB. Firstly, we design a style transfer network where the style encoder, content encoder, and corresponding decoder are custom designed to guarantee low computational cost and high shape retention. Besides, the weighted style loss function is presented to improve the performance of style migration. Then, we propose a novel knowledge distillation method (Symmetric Knowledge Distillation, SKD) for encoder-decoder-based style transfer models, which redefines the knowledge and symmetrically compresses the encoder and decoder. With the SKD, the proposed style transfer network is further compressed by 14 times to achieve the KBStyle. Experimental results demonstrate that the proposed SKD method achieves comparable results with other SOTA knowledge distillation algorithms for style transfer. Besides, the proposed KBStyle achieves high-quality stylized images. And the inference time of the KBStyle on an Nvidia TITAN RTX GPU is only 20 ms when the resolutions of the content image and style image are both 2k-resolution ( 2048×1080 ). Moreover, the 200 KB model size of KBStyle is much smaller than the SOTA models and facilitates style transfer on mobile devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Aries完成签到,获得积分10
3秒前
3秒前
Pretrial完成签到 ,获得积分10
3秒前
Jocelyn7发布了新的文献求助10
4秒前
wmmm发布了新的文献求助10
4秒前
余笙发布了新的文献求助10
5秒前
充电宝应助冷傲迎梦采纳,获得10
5秒前
彭于晏应助qi采纳,获得30
5秒前
科研通AI2S应助shor0414采纳,获得10
5秒前
ponyy发布了新的文献求助30
6秒前
秋之月发布了新的文献求助10
7秒前
skier发布了新的文献求助10
8秒前
balabala完成签到,获得积分20
8秒前
隐形曼青应助kb采纳,获得10
9秒前
yanyan发布了新的文献求助10
11秒前
繁笙完成签到 ,获得积分10
11秒前
11秒前
无言完成签到 ,获得积分10
11秒前
NONO完成签到 ,获得积分10
12秒前
星辰大海应助TT采纳,获得10
12秒前
14秒前
康康完成签到,获得积分10
14秒前
Xv完成签到,获得积分0
14秒前
17秒前
17秒前
香蕉觅云应助zfzf0422采纳,获得10
17秒前
18秒前
18秒前
李健应助爱听歌的向日葵采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
烟花应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得80
19秒前
所所应助科研通管家采纳,获得20
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得30
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824