Diffusion model and vision transformer for intelligent fault diagnosis under small samples

计算机科学 变压器 嵌入 人工智能 断层(地质) 模式识别(心理学) 数据挖掘 算法 电压 工程类 电气工程 地质学 地震学
作者
Jian Cen,Weiwei Si,Xi Liu,Baohua Zhao,Chuansheng Xu,Shan Liu,Yanli Xin
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (3): 036204-036204
标识
DOI:10.1088/1361-6501/ad179c
摘要

Abstract The existing deep learning models can achieve a high level of fault diagnosis accuracy in the case of a large number of samples. However, in actual production, data is often limited due to the difficulty of data collection and labeling. For small sample fault diagnosis, a fault diagnosis method called diffusion model-overlapping-patch vision transformer (DM-OVT) is proposed in this paper. The method adds coordinate attention to the DM, so that it can consider both channel information and spatial information. In the patch embedding part of Vision Transformer, features are first extracted using convolutional layers, and then overlapping patch divisions are used to improve the correlation between each patch. To be specific, DM-OVT first uses short-time Fourier transform to convert the one-dimensional signals into the time–frequency maps. And then inputs them into the DM to generate different classes of fault data according to labels. Finally, OVT is used to classify the expanded data. The effectiveness of the proposed method was tested on data sets from laboratory multistage centrifugal fans and Case Western Reserve University, and the highest accuracy was achieved in the comparison experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
刚刚
8R60d8应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
DK应助科研通管家采纳,获得30
刚刚
脑洞疼应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
taro发布了新的文献求助10
1秒前
1秒前
chen完成签到,获得积分0
2秒前
祁丶发布了新的文献求助30
3秒前
就这杨吗发布了新的文献求助10
4秒前
香蕉觅云应助404采纳,获得10
5秒前
玉米发布了新的文献求助10
6秒前
香蕉觅云应助港岛妹妹采纳,获得10
6秒前
追梦人2016完成签到 ,获得积分10
6秒前
YANG完成签到,获得积分10
6秒前
taro完成签到,获得积分10
8秒前
10秒前
橘子完成签到,获得积分20
10秒前
情怀应助西西采纳,获得10
10秒前
华仔应助祁丶采纳,获得30
11秒前
木查不是猹完成签到,获得积分10
12秒前
小马甲应助Mstone采纳,获得10
13秒前
8R60d8应助maytang采纳,获得10
14秒前
14秒前
16秒前
FIN应助开心的若烟采纳,获得10
16秒前
17秒前
18秒前
404发布了新的文献求助10
19秒前
搜集达人应助咩咩羊采纳,获得10
19秒前
追光者发布了新的文献求助10
22秒前
bkagyin应助塔塔饼采纳,获得10
22秒前
sanling关注了科研通微信公众号
22秒前
22秒前
ceeray23应助张张张采纳,获得10
23秒前
生壁发布了新的文献求助10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459121
求助须知:如何正确求助?哪些是违规求助? 3053676
关于积分的说明 9037638
捐赠科研通 2742926
什么是DOI,文献DOI怎么找? 1504571
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694605