Optimal tuning of three deep learning methods with signal processing and anomaly detection for multi-class damage detection of a large-scale bridge

异常检测 桥(图论) 比例(比率) 计算机科学 班级(哲学) 人工智能 信号(编程语言) 信号处理 模式识别(心理学) 异常(物理) 物理 数字信号处理 生物 计算机硬件 量子力学 解剖 程序设计语言 凝聚态物理
作者
Rouzbeh Doroudi,Seyed Hossein Hosseini Lavassani,Mohsen Shahrouzi
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:3
标识
DOI:10.1177/14759217231216694
摘要

Long-span bridges play a crucial role in urbanization, connecting communities across vast obstacles. Structural health monitoring techniques have been deployed on these bridges, generate large amounts of data through sensor measurements, requiring data-driven approaches like deep learning (DL) for effective analysis. However, feature extraction from time-domain vibration response signals poses challenges for DL methods. To address this, the study proposes utilizing signal processing techniques such as the multivariate empirical mode decomposition (MEMD) and Wavelet transform (WT) to extract essential features for damage classification. The incorporation of MEMD and WT aims to overcome limitations and process nonstationary and nonlinear signals effectively. Three DL techniques, long-short-term memory (LSTM), one dimensional convolutional neural network (1D-CNN), multi-layer perceptron (MLP) are tuned and applied to Structural Health Monitoring of Tianjin Yonghe Bridge (located in China) as a real-world case study, in order to detect its condition by Deep signal anomaly detection and identify types of the damage. A powerful meta-heuristic algorithm called Observer-Teacher-Learner-Based Optimization, is used to optimize both hyperparameters and architecture of each DL models. The results demonstrate that the optimally tuned DLs are successful in identifying types of damage, as well as the condition of the structure, for the Tianjin Yonghe Bridge. The average accuracy values are obtained as 98.13, 97.96, and 97.79 for 1D-CNN, LSTM, and MLP, respectively. Such optimally tuned DLs are evaluated as effective solutions for detecting damage on large-scale bridges by extracting statistical time-domain and time–frequency domain features using the WT and MEMD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助兜兜采纳,获得10
刚刚
诗酒完成签到,获得积分20
2秒前
黄桃酥发布了新的文献求助10
2秒前
3秒前
章小白发布了新的文献求助10
3秒前
炙热冰夏完成签到,获得积分10
3秒前
脑洞疼应助乐观的小松鼠采纳,获得10
3秒前
3秒前
英俊的铭应助炖地瓜采纳,获得10
4秒前
Frank应助kento采纳,获得50
5秒前
Frank应助独特的尔风采纳,获得200
6秒前
万木春完成签到 ,获得积分10
6秒前
田様应助彭凯采纳,获得10
6秒前
7秒前
znchick发布了新的文献求助10
8秒前
9秒前
大模型应助1988采纳,获得10
9秒前
9秒前
情怀应助阿莱克修斯采纳,获得10
9秒前
阿超完成签到,获得积分10
9秒前
神宝宝发布了新的文献求助10
10秒前
帝国超级硕士完成签到,获得积分10
10秒前
11秒前
Ava应助带帽采纳,获得10
11秒前
章小白完成签到,获得积分10
11秒前
乐观的颦发布了新的文献求助200
12秒前
12秒前
朴素代秋完成签到,获得积分10
13秒前
yzw完成签到,获得积分10
13秒前
打打应助gyyzj采纳,获得10
13秒前
14秒前
欣喜的小兔子完成签到,获得积分10
14秒前
chen7777完成签到,获得积分10
15秒前
Ava应助GT采纳,获得10
15秒前
炖地瓜发布了新的文献求助10
17秒前
chen7777发布了新的文献求助10
18秒前
可爱的函函应助Baoyuan_Zhu采纳,获得10
18秒前
柠橙完成签到,获得积分10
18秒前
小蘑菇应助Kitty采纳,获得10
18秒前
20秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157866
求助须知:如何正确求助?哪些是违规求助? 2809202
关于积分的说明 7880857
捐赠科研通 2467704
什么是DOI,文献DOI怎么找? 1313664
科研通“疑难数据库(出版商)”最低求助积分说明 630476
版权声明 601943