Optimal tuning of three deep learning methods with signal processing and anomaly detection for multi-class damage detection of a large-scale bridge

异常检测 桥(图论) 比例(比率) 计算机科学 班级(哲学) 人工智能 信号(编程语言) 信号处理 模式识别(心理学) 异常(物理) 物理 数字信号处理 生物 计算机硬件 量子力学 解剖 程序设计语言 凝聚态物理
作者
Rouzbeh Doroudi,Seyed Hossein Hosseini Lavassani,Mohsen Shahrouzi
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:3
标识
DOI:10.1177/14759217231216694
摘要

Long-span bridges play a crucial role in urbanization, connecting communities across vast obstacles. Structural health monitoring techniques have been deployed on these bridges, generate large amounts of data through sensor measurements, requiring data-driven approaches like deep learning (DL) for effective analysis. However, feature extraction from time-domain vibration response signals poses challenges for DL methods. To address this, the study proposes utilizing signal processing techniques such as the multivariate empirical mode decomposition (MEMD) and Wavelet transform (WT) to extract essential features for damage classification. The incorporation of MEMD and WT aims to overcome limitations and process nonstationary and nonlinear signals effectively. Three DL techniques, long-short-term memory (LSTM), one dimensional convolutional neural network (1D-CNN), multi-layer perceptron (MLP) are tuned and applied to Structural Health Monitoring of Tianjin Yonghe Bridge (located in China) as a real-world case study, in order to detect its condition by Deep signal anomaly detection and identify types of the damage. A powerful meta-heuristic algorithm called Observer-Teacher-Learner-Based Optimization, is used to optimize both hyperparameters and architecture of each DL models. The results demonstrate that the optimally tuned DLs are successful in identifying types of damage, as well as the condition of the structure, for the Tianjin Yonghe Bridge. The average accuracy values are obtained as 98.13, 97.96, and 97.79 for 1D-CNN, LSTM, and MLP, respectively. Such optimally tuned DLs are evaluated as effective solutions for detecting damage on large-scale bridges by extracting statistical time-domain and time–frequency domain features using the WT and MEMD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助科研通管家采纳,获得10
1秒前
小马甲应助mimi采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
雪白问兰应助科研通管家采纳,获得30
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
zzzzzz应助科研通管家采纳,获得20
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
sidegate应助科研通管家采纳,获得10
1秒前
prosperp应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
li完成签到,获得积分10
1秒前
1秒前
mlml完成签到,获得积分10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
Zn应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
Zn应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
jimmy发布了新的文献求助10
2秒前
华仔应助hhh采纳,获得10
3秒前
hug完成签到,获得积分10
3秒前
科研通AI5应助cxwong采纳,获得10
3秒前
3秒前
沉敛一生完成签到,获得积分10
3秒前
hhy发布了新的文献求助10
3秒前
starry发布了新的文献求助10
4秒前
Wxd0211发布了新的文献求助10
4秒前
章鱼完成签到,获得积分20
4秒前
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672