Optimal tuning of three deep learning methods with signal processing and anomaly detection for multi-class damage detection of a large-scale bridge

异常检测 启发式 超参数 计算机科学 卷积神经网络 希尔伯特-黄变换 人工智能 特征提取 深度学习 结构健康监测 时域 模式识别(心理学) 感知器 机器学习 人工神经网络 工程类 计算机视觉 滤波器(信号处理) 结构工程
作者
Rouzbeh Doroudi,Seyed Hossein Hosseini Lavassani,Mohsen Shahrouzi
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (5): 3227-3252 被引量:21
标识
DOI:10.1177/14759217231216694
摘要

Long-span bridges play a crucial role in urbanization, connecting communities across vast obstacles. Structural health monitoring techniques have been deployed on these bridges, generate large amounts of data through sensor measurements, requiring data-driven approaches like deep learning (DL) for effective analysis. However, feature extraction from time-domain vibration response signals poses challenges for DL methods. To address this, the study proposes utilizing signal processing techniques such as the multivariate empirical mode decomposition (MEMD) and Wavelet transform (WT) to extract essential features for damage classification. The incorporation of MEMD and WT aims to overcome limitations and process nonstationary and nonlinear signals effectively. Three DL techniques, long-short-term memory (LSTM), one dimensional convolutional neural network (1D-CNN), multi-layer perceptron (MLP) are tuned and applied to Structural Health Monitoring of Tianjin Yonghe Bridge (located in China) as a real-world case study, in order to detect its condition by Deep signal anomaly detection and identify types of the damage. A powerful meta-heuristic algorithm called Observer-Teacher-Learner-Based Optimization, is used to optimize both hyperparameters and architecture of each DL models. The results demonstrate that the optimally tuned DLs are successful in identifying types of damage, as well as the condition of the structure, for the Tianjin Yonghe Bridge. The average accuracy values are obtained as 98.13, 97.96, and 97.79 for 1D-CNN, LSTM, and MLP, respectively. Such optimally tuned DLs are evaluated as effective solutions for detecting damage on large-scale bridges by extracting statistical time-domain and time–frequency domain features using the WT and MEMD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
绝活中投发布了新的文献求助10
刚刚
刚刚
AN应助LSDragon666采纳,获得30
1秒前
1秒前
专一的善愁完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
所所应助西北望采纳,获得10
2秒前
Shixin发布了新的文献求助10
2秒前
2秒前
3秒前
英俊的铭应助lilei采纳,获得10
3秒前
tangqi完成签到,获得积分10
3秒前
jiayue完成签到,获得积分10
3秒前
Jasper应助weijie采纳,获得10
3秒前
4秒前
4秒前
4秒前
雪茶应助米卡米卡采纳,获得10
4秒前
4秒前
呼呼大睡完成签到,获得积分10
5秒前
专注黄豆完成签到,获得积分10
5秒前
姚盈盈发布了新的文献求助10
5秒前
搜集达人应助小杨采纳,获得10
5秒前
无花果应助舒适从菡采纳,获得10
5秒前
蓝桉发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
tangqi发布了新的文献求助10
6秒前
6秒前
yatudou完成签到,获得积分10
6秒前
7秒前
郑开司09发布了新的文献求助10
7秒前
所所应助enen采纳,获得10
7秒前
Jerry完成签到,获得积分10
7秒前
科研通AI6应助凉凉俊采纳,获得10
7秒前
lsss发布了新的文献求助10
8秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580183
求助须知:如何正确求助?哪些是违规求助? 4665044
关于积分的说明 14754353
捐赠科研通 4606555
什么是DOI,文献DOI怎么找? 2527823
邀请新用户注册赠送积分活动 1497229
关于科研通互助平台的介绍 1466289