Multi-stream Bi-GRU network to extract a comprehensive feature set for ECG signal classification

计算机科学 特征(语言学) 特征提取 卷积神经网络 模式识别(心理学) 随机森林 人工智能 深度学习 语言学 哲学
作者
Allam Jaya Prakash,Suraj Prakash Sahoo,Samit Ari
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:92: 106097-106097 被引量:7
标识
DOI:10.1016/j.bspc.2024.106097
摘要

Electrocardiogram (ECG) signal analysis plays a crucial role in diagnosing and monitoring various cardiac diseases. Automatic ECG beat classification is necessary to analyze long-term ECG recordings. The major limitations of the traditional automatic ECG beat classification approaches are the constraints of hand-crafted feature extraction, the requirement of an extensive training dataset, dealing with the ECG signal as an image, and poor performance in detecting supraventricular ectopic and ventricular (S and V) beats. To overcome the above-mentioned difficulties, a novel approach to ECG signal classification based on deep feature extraction with minimum complexity along with random forest is proposed in this work. Three different individual blocks are designed with convolutional neural networks (CNN), residuals, and bi-directional gated recurrent units (Bi-GRU) to extract distributed representative, hierarchical & condensed, and long-term dependency features. These extracted features are used to form deep features with the help of concatenation and fusion techniques. The resulting features are able to capture both the morphology and temporal dynamics of the ECG signal. These features are more effective in identifying different types of arrhythmias, predicting future cardiac events, and filtering out noise and artifacts. The unique nature of the features obtained by combining CNN, residual blocks, and Bi-GRU enables a more comprehensive and accurate analysis of the ECG signal, which is particularly important for diagnosing and monitoring cardiac abnormalities. Finally, the extracted deep feature set is utilized to train and test the random forest algorithm. The proposed approach was evaluated on three publicly available datasets and achieved better performance with an overall accuracy of more than 98.00%. Our approach outperforms existing literature by providing a more accurate classification of ECG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助猪猪hero采纳,获得10
8秒前
Jeffery426发布了新的文献求助10
9秒前
时代更迭完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
15秒前
18秒前
luoyukejing完成签到,获得积分10
20秒前
幽默艳发布了新的文献求助10
24秒前
罗添龙发布了新的文献求助10
31秒前
W~舞发布了新的文献求助10
34秒前
唯梦完成签到 ,获得积分10
37秒前
优雅莞完成签到,获得积分10
37秒前
SciGPT应助ly采纳,获得10
37秒前
我是老大应助罗添龙采纳,获得10
42秒前
harry2021完成签到,获得积分10
46秒前
天水张家辉完成签到,获得积分10
46秒前
50秒前
烟火会翻滚完成签到,获得积分10
52秒前
酷波er应助科研通管家采纳,获得10
52秒前
52秒前
52秒前
ly发布了新的文献求助10
53秒前
dldldl完成签到,获得积分10
58秒前
adazbq完成签到 ,获得积分0
1分钟前
1分钟前
喻雷发布了新的文献求助50
1分钟前
豆腐青菜雨完成签到 ,获得积分10
1分钟前
研友_西门孤晴完成签到,获得积分10
1分钟前
Joanne完成签到 ,获得积分10
1分钟前
猪猪hero发布了新的文献求助10
1分钟前
浮云完成签到 ,获得积分10
1分钟前
蒲公英完成签到 ,获得积分10
1分钟前
犹豫的若完成签到,获得积分10
1分钟前
ZX801完成签到 ,获得积分10
1分钟前
Vegeta完成签到 ,获得积分10
1分钟前
不安愚志完成签到 ,获得积分10
1分钟前
火之高兴完成签到 ,获得积分10
1分钟前
qianci2009完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
wx2360ouc完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008738
求助须知:如何正确求助?哪些是违规求助? 3548380
关于积分的说明 11298823
捐赠科研通 3283051
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218