Multi-stream Bi-GRU network to extract a comprehensive feature set for ECG signal classification

计算机科学 特征(语言学) 特征提取 卷积神经网络 模式识别(心理学) 随机森林 人工智能 深度学习 语言学 哲学
作者
Allam Jaya Prakash,Suraj Prakash Sahoo,Samit Ari
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:92: 106097-106097 被引量:7
标识
DOI:10.1016/j.bspc.2024.106097
摘要

Electrocardiogram (ECG) signal analysis plays a crucial role in diagnosing and monitoring various cardiac diseases. Automatic ECG beat classification is necessary to analyze long-term ECG recordings. The major limitations of the traditional automatic ECG beat classification approaches are the constraints of hand-crafted feature extraction, the requirement of an extensive training dataset, dealing with the ECG signal as an image, and poor performance in detecting supraventricular ectopic and ventricular (S and V) beats. To overcome the above-mentioned difficulties, a novel approach to ECG signal classification based on deep feature extraction with minimum complexity along with random forest is proposed in this work. Three different individual blocks are designed with convolutional neural networks (CNN), residuals, and bi-directional gated recurrent units (Bi-GRU) to extract distributed representative, hierarchical & condensed, and long-term dependency features. These extracted features are used to form deep features with the help of concatenation and fusion techniques. The resulting features are able to capture both the morphology and temporal dynamics of the ECG signal. These features are more effective in identifying different types of arrhythmias, predicting future cardiac events, and filtering out noise and artifacts. The unique nature of the features obtained by combining CNN, residual blocks, and Bi-GRU enables a more comprehensive and accurate analysis of the ECG signal, which is particularly important for diagnosing and monitoring cardiac abnormalities. Finally, the extracted deep feature set is utilized to train and test the random forest algorithm. The proposed approach was evaluated on three publicly available datasets and achieved better performance with an overall accuracy of more than 98.00%. Our approach outperforms existing literature by providing a more accurate classification of ECG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhuangxiong完成签到,获得积分10
刚刚
Palm完成签到,获得积分10
1秒前
1秒前
1秒前
早起完成签到,获得积分10
1秒前
1秒前
油菜花完成签到,获得积分10
2秒前
kkk完成签到,获得积分10
2秒前
其实是北北吖完成签到,获得积分10
2秒前
yqsf789发布了新的文献求助10
2秒前
wenhuanwenxian完成签到 ,获得积分10
2秒前
焦明准完成签到,获得积分10
3秒前
梦飞完成签到,获得积分10
3秒前
居然是我完成签到,获得积分10
3秒前
哒哒完成签到,获得积分10
3秒前
sindex完成签到,获得积分10
3秒前
WUYANG发布了新的文献求助10
4秒前
舒适的淇完成签到,获得积分10
5秒前
yi完成签到,获得积分10
5秒前
DADing完成签到,获得积分10
5秒前
临床医学研究中心完成签到,获得积分10
6秒前
淞淞于我完成签到 ,获得积分10
6秒前
yk完成签到 ,获得积分10
6秒前
燕燕发布了新的文献求助10
7秒前
灵寒完成签到 ,获得积分10
7秒前
orixero应助123采纳,获得10
7秒前
zjzjzhujun发布了新的文献求助10
8秒前
题西林壁完成签到,获得积分10
9秒前
Nnaao完成签到 ,获得积分10
9秒前
9秒前
嘟嘟完成签到,获得积分10
9秒前
木南完成签到,获得积分10
10秒前
10秒前
法侣完成签到,获得积分10
10秒前
感动水杯完成签到 ,获得积分10
11秒前
eternal_dreams完成签到 ,获得积分10
11秒前
搜集达人应助winni采纳,获得30
11秒前
Maglev完成签到,获得积分10
11秒前
你帅你有理完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883