亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-stream Bi-GRU network to extract a comprehensive feature set for ECG signal classification

计算机科学 特征(语言学) 特征提取 卷积神经网络 模式识别(心理学) 随机森林 人工智能 深度学习 语言学 哲学
作者
Allam Jaya Prakash,Suraj Prakash Sahoo,Samit Ari
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:92: 106097-106097 被引量:7
标识
DOI:10.1016/j.bspc.2024.106097
摘要

Electrocardiogram (ECG) signal analysis plays a crucial role in diagnosing and monitoring various cardiac diseases. Automatic ECG beat classification is necessary to analyze long-term ECG recordings. The major limitations of the traditional automatic ECG beat classification approaches are the constraints of hand-crafted feature extraction, the requirement of an extensive training dataset, dealing with the ECG signal as an image, and poor performance in detecting supraventricular ectopic and ventricular (S and V) beats. To overcome the above-mentioned difficulties, a novel approach to ECG signal classification based on deep feature extraction with minimum complexity along with random forest is proposed in this work. Three different individual blocks are designed with convolutional neural networks (CNN), residuals, and bi-directional gated recurrent units (Bi-GRU) to extract distributed representative, hierarchical & condensed, and long-term dependency features. These extracted features are used to form deep features with the help of concatenation and fusion techniques. The resulting features are able to capture both the morphology and temporal dynamics of the ECG signal. These features are more effective in identifying different types of arrhythmias, predicting future cardiac events, and filtering out noise and artifacts. The unique nature of the features obtained by combining CNN, residual blocks, and Bi-GRU enables a more comprehensive and accurate analysis of the ECG signal, which is particularly important for diagnosing and monitoring cardiac abnormalities. Finally, the extracted deep feature set is utilized to train and test the random forest algorithm. The proposed approach was evaluated on three publicly available datasets and achieved better performance with an overall accuracy of more than 98.00%. Our approach outperforms existing literature by providing a more accurate classification of ECG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助Soya_FERRUM采纳,获得10
3秒前
44秒前
44秒前
ruru123发布了新的文献求助10
49秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
我是老大应助ruru123采纳,获得10
1分钟前
Soya_FERRUM发布了新的文献求助10
1分钟前
cao_bq完成签到,获得积分10
1分钟前
隐形曼青应助Karol采纳,获得10
1分钟前
Lucas应助ZgnomeshghT采纳,获得10
1分钟前
科研通AI5应助Karol采纳,获得10
1分钟前
FMHChan完成签到,获得积分10
1分钟前
2分钟前
何hao发布了新的文献求助10
2分钟前
馆长举报清水求助涉嫌违规
2分钟前
小包完成签到,获得积分10
2分钟前
华仔应助小包采纳,获得10
2分钟前
何hao完成签到,获得积分10
2分钟前
余悸完成签到 ,获得积分10
3分钟前
馆长举报藤井树求助涉嫌违规
3分钟前
小羊咩完成签到 ,获得积分0
3分钟前
3分钟前
pwh完成签到,获得积分20
3分钟前
3分钟前
3分钟前
曲聋五完成签到 ,获得积分0
3分钟前
4分钟前
wop111发布了新的文献求助20
4分钟前
科研通AI6应助Que采纳,获得10
4分钟前
4分钟前
4分钟前
wanci应助Soya_FERRUM采纳,获得10
4分钟前
5分钟前
yjc666发布了新的文献求助10
5分钟前
桐桐应助yjc666采纳,获得10
5分钟前
5分钟前
朴实山兰完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5019542
求助须知:如何正确求助?哪些是违规求助? 4258442
关于积分的说明 13271168
捐赠科研通 4063435
什么是DOI,文献DOI怎么找? 2222599
邀请新用户注册赠送积分活动 1231647
关于科研通互助平台的介绍 1154803