Multi-stream Bi-GRU network to extract a comprehensive feature set for ECG signal classification

计算机科学 特征(语言学) 特征提取 卷积神经网络 模式识别(心理学) 随机森林 人工智能 深度学习 语言学 哲学
作者
Allam Jaya Prakash,Suraj Prakash Sahoo,Samit Ari
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:92: 106097-106097 被引量:7
标识
DOI:10.1016/j.bspc.2024.106097
摘要

Electrocardiogram (ECG) signal analysis plays a crucial role in diagnosing and monitoring various cardiac diseases. Automatic ECG beat classification is necessary to analyze long-term ECG recordings. The major limitations of the traditional automatic ECG beat classification approaches are the constraints of hand-crafted feature extraction, the requirement of an extensive training dataset, dealing with the ECG signal as an image, and poor performance in detecting supraventricular ectopic and ventricular (S and V) beats. To overcome the above-mentioned difficulties, a novel approach to ECG signal classification based on deep feature extraction with minimum complexity along with random forest is proposed in this work. Three different individual blocks are designed with convolutional neural networks (CNN), residuals, and bi-directional gated recurrent units (Bi-GRU) to extract distributed representative, hierarchical & condensed, and long-term dependency features. These extracted features are used to form deep features with the help of concatenation and fusion techniques. The resulting features are able to capture both the morphology and temporal dynamics of the ECG signal. These features are more effective in identifying different types of arrhythmias, predicting future cardiac events, and filtering out noise and artifacts. The unique nature of the features obtained by combining CNN, residual blocks, and Bi-GRU enables a more comprehensive and accurate analysis of the ECG signal, which is particularly important for diagnosing and monitoring cardiac abnormalities. Finally, the extracted deep feature set is utilized to train and test the random forest algorithm. The proposed approach was evaluated on three publicly available datasets and achieved better performance with an overall accuracy of more than 98.00%. Our approach outperforms existing literature by providing a more accurate classification of ECG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霹雳小土豆-完成签到,获得积分0
刚刚
cc完成签到,获得积分10
刚刚
刚刚
饱满的老九完成签到,获得积分10
刚刚
啦啦啦完成签到 ,获得积分10
1秒前
1秒前
pluto应助小城故事和冰雨采纳,获得10
1秒前
2秒前
ljljljlj发布了新的文献求助10
2秒前
是锦锦呀完成签到,获得积分10
2秒前
朴实惜天发布了新的文献求助10
2秒前
幸福的之槐完成签到,获得积分10
2秒前
kangnakangna完成签到,获得积分10
2秒前
2秒前
徐恭完成签到,获得积分10
3秒前
努力努力发布了新的文献求助10
3秒前
lin发布了新的文献求助10
3秒前
3秒前
forever完成签到,获得积分10
3秒前
穆易羊完成签到 ,获得积分10
3秒前
2190894524关注了科研通微信公众号
4秒前
是锦锦呀发布了新的文献求助10
4秒前
小斌完成签到,获得积分10
4秒前
5秒前
ymm关闭了ymm文献求助
5秒前
5秒前
Cc完成签到,获得积分10
5秒前
6秒前
6秒前
blink完成签到,获得积分10
6秒前
伊诺完成签到,获得积分10
6秒前
玄学小生发布了新的文献求助10
6秒前
万能图书馆应助燕燕采纳,获得30
6秒前
6秒前
7秒前
时尚的傲霜完成签到,获得积分10
7秒前
朴实惜天完成签到,获得积分10
7秒前
7秒前
JC发布了新的文献求助10
7秒前
古德猫宁完成签到 ,获得积分10
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009668
求助须知:如何正确求助?哪些是违规求助? 3549638
关于积分的说明 11302957
捐赠科研通 3284181
什么是DOI,文献DOI怎么找? 1810535
邀请新用户注册赠送积分活动 886356
科研通“疑难数据库(出版商)”最低求助积分说明 811355