亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-stream Bi-GRU network to extract a comprehensive feature set for ECG signal classification

计算机科学 特征(语言学) 特征提取 卷积神经网络 模式识别(心理学) 随机森林 人工智能 深度学习 语言学 哲学
作者
Allam Jaya Prakash,Suraj Prakash Sahoo,Samit Ari
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:92: 106097-106097 被引量:7
标识
DOI:10.1016/j.bspc.2024.106097
摘要

Electrocardiogram (ECG) signal analysis plays a crucial role in diagnosing and monitoring various cardiac diseases. Automatic ECG beat classification is necessary to analyze long-term ECG recordings. The major limitations of the traditional automatic ECG beat classification approaches are the constraints of hand-crafted feature extraction, the requirement of an extensive training dataset, dealing with the ECG signal as an image, and poor performance in detecting supraventricular ectopic and ventricular (S and V) beats. To overcome the above-mentioned difficulties, a novel approach to ECG signal classification based on deep feature extraction with minimum complexity along with random forest is proposed in this work. Three different individual blocks are designed with convolutional neural networks (CNN), residuals, and bi-directional gated recurrent units (Bi-GRU) to extract distributed representative, hierarchical & condensed, and long-term dependency features. These extracted features are used to form deep features with the help of concatenation and fusion techniques. The resulting features are able to capture both the morphology and temporal dynamics of the ECG signal. These features are more effective in identifying different types of arrhythmias, predicting future cardiac events, and filtering out noise and artifacts. The unique nature of the features obtained by combining CNN, residual blocks, and Bi-GRU enables a more comprehensive and accurate analysis of the ECG signal, which is particularly important for diagnosing and monitoring cardiac abnormalities. Finally, the extracted deep feature set is utilized to train and test the random forest algorithm. The proposed approach was evaluated on three publicly available datasets and achieved better performance with an overall accuracy of more than 98.00%. Our approach outperforms existing literature by providing a more accurate classification of ECG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23应助科研通管家采纳,获得10
20秒前
ceeray23应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
GingerF应助科研通管家采纳,获得50
21秒前
精明凡双完成签到,获得积分0
43秒前
1分钟前
优美的冰巧发布了新的文献求助200
1分钟前
mochalv123完成签到 ,获得积分10
1分钟前
2分钟前
徐蹇完成签到,获得积分10
2分钟前
Jarvis Lin发布了新的文献求助10
2分钟前
优美的冰巧完成签到,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
Jarvis Lin完成签到,获得积分10
2分钟前
务实的远航完成签到 ,获得积分10
2分钟前
blenx完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
科研通AI2S应助勤恳依霜采纳,获得10
3分钟前
打打应助务实的远航采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
重要冲发布了新的文献求助10
4分钟前
zhuxd完成签到,获得积分10
4分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
科研通AI5应助酥酥采纳,获得10
6分钟前
6分钟前
酥酥发布了新的文献求助10
6分钟前
七一藕发布了新的文献求助30
7分钟前
Michael-布莱恩特完成签到 ,获得积分10
7分钟前
泡泡果发布了新的文献求助10
8分钟前
ceeray23应助科研通管家采纳,获得10
8分钟前
爆米花应助科研通管家采纳,获得10
8分钟前
CipherSage应助睿_采纳,获得10
8分钟前
MchemG完成签到,获得积分0
8分钟前
泡泡果完成签到,获得积分20
9分钟前
ok123完成签到 ,获得积分10
9分钟前
sandwich完成签到 ,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186680
求助须知:如何正确求助?哪些是违规求助? 4371806
关于积分的说明 13612582
捐赠科研通 4224493
什么是DOI,文献DOI怎么找? 2317049
邀请新用户注册赠送积分活动 1315668
关于科研通互助平台的介绍 1264986