Multi-stream Bi-GRU network to extract a comprehensive feature set for ECG signal classification

计算机科学 特征(语言学) 特征提取 卷积神经网络 模式识别(心理学) 随机森林 人工智能 深度学习 语言学 哲学
作者
Allam Jaya Prakash,Suraj Prakash Sahoo,Samit Ari
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:92: 106097-106097 被引量:7
标识
DOI:10.1016/j.bspc.2024.106097
摘要

Electrocardiogram (ECG) signal analysis plays a crucial role in diagnosing and monitoring various cardiac diseases. Automatic ECG beat classification is necessary to analyze long-term ECG recordings. The major limitations of the traditional automatic ECG beat classification approaches are the constraints of hand-crafted feature extraction, the requirement of an extensive training dataset, dealing with the ECG signal as an image, and poor performance in detecting supraventricular ectopic and ventricular (S and V) beats. To overcome the above-mentioned difficulties, a novel approach to ECG signal classification based on deep feature extraction with minimum complexity along with random forest is proposed in this work. Three different individual blocks are designed with convolutional neural networks (CNN), residuals, and bi-directional gated recurrent units (Bi-GRU) to extract distributed representative, hierarchical & condensed, and long-term dependency features. These extracted features are used to form deep features with the help of concatenation and fusion techniques. The resulting features are able to capture both the morphology and temporal dynamics of the ECG signal. These features are more effective in identifying different types of arrhythmias, predicting future cardiac events, and filtering out noise and artifacts. The unique nature of the features obtained by combining CNN, residual blocks, and Bi-GRU enables a more comprehensive and accurate analysis of the ECG signal, which is particularly important for diagnosing and monitoring cardiac abnormalities. Finally, the extracted deep feature set is utilized to train and test the random forest algorithm. The proposed approach was evaluated on three publicly available datasets and achieved better performance with an overall accuracy of more than 98.00%. Our approach outperforms existing literature by providing a more accurate classification of ECG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏凡之完成签到 ,获得积分10
刚刚
3秒前
4秒前
fuguier发布了新的文献求助10
5秒前
7秒前
zsk1122完成签到,获得积分10
9秒前
荔枝发布了新的文献求助10
9秒前
lyy完成签到 ,获得积分10
10秒前
13秒前
myuniv完成签到,获得积分10
13秒前
专注鸵鸟完成签到,获得积分10
13秒前
专注之双完成签到,获得积分10
14秒前
Zircon完成签到 ,获得积分10
15秒前
Much完成签到 ,获得积分10
16秒前
16秒前
充电宝应助颠覆乾坤采纳,获得10
17秒前
18秒前
无花果应助pz采纳,获得10
18秒前
zheng完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
星辰大海应助荔枝采纳,获得10
21秒前
LJL发布了新的文献求助10
22秒前
meng发布了新的文献求助10
22秒前
无私的颤完成签到,获得积分10
22秒前
lucky完成签到 ,获得积分10
23秒前
Zel博博完成签到,获得积分10
23秒前
谷粱诗云完成签到,获得积分10
23秒前
yar应助myuniv采纳,获得10
23秒前
xc完成签到 ,获得积分10
24秒前
24秒前
干净的天与完成签到,获得积分10
24秒前
哈基米德应助毅诚菌采纳,获得10
26秒前
铁甲小杨完成签到,获得积分0
26秒前
27秒前
卡机了完成签到,获得积分10
28秒前
平淡绿柏完成签到,获得积分10
30秒前
架子猫发布了新的文献求助10
30秒前
30秒前
颠覆乾坤发布了新的文献求助10
31秒前
乔乔完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022