亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-stream Bi-GRU network to extract a comprehensive feature set for ECG signal classification

计算机科学 特征(语言学) 特征提取 卷积神经网络 模式识别(心理学) 随机森林 人工智能 深度学习 语言学 哲学
作者
Allam Jaya Prakash,Suraj Prakash Sahoo,Samit Ari
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:92: 106097-106097 被引量:7
标识
DOI:10.1016/j.bspc.2024.106097
摘要

Electrocardiogram (ECG) signal analysis plays a crucial role in diagnosing and monitoring various cardiac diseases. Automatic ECG beat classification is necessary to analyze long-term ECG recordings. The major limitations of the traditional automatic ECG beat classification approaches are the constraints of hand-crafted feature extraction, the requirement of an extensive training dataset, dealing with the ECG signal as an image, and poor performance in detecting supraventricular ectopic and ventricular (S and V) beats. To overcome the above-mentioned difficulties, a novel approach to ECG signal classification based on deep feature extraction with minimum complexity along with random forest is proposed in this work. Three different individual blocks are designed with convolutional neural networks (CNN), residuals, and bi-directional gated recurrent units (Bi-GRU) to extract distributed representative, hierarchical & condensed, and long-term dependency features. These extracted features are used to form deep features with the help of concatenation and fusion techniques. The resulting features are able to capture both the morphology and temporal dynamics of the ECG signal. These features are more effective in identifying different types of arrhythmias, predicting future cardiac events, and filtering out noise and artifacts. The unique nature of the features obtained by combining CNN, residual blocks, and Bi-GRU enables a more comprehensive and accurate analysis of the ECG signal, which is particularly important for diagnosing and monitoring cardiac abnormalities. Finally, the extracted deep feature set is utilized to train and test the random forest algorithm. The proposed approach was evaluated on three publicly available datasets and achieved better performance with an overall accuracy of more than 98.00%. Our approach outperforms existing literature by providing a more accurate classification of ECG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
carrieschen发布了新的文献求助30
5秒前
张可完成签到 ,获得积分10
16秒前
18秒前
carrieschen完成签到,获得积分10
20秒前
文静三颜完成签到,获得积分10
26秒前
余凌兰完成签到 ,获得积分10
40秒前
40秒前
43秒前
LZY发布了新的文献求助10
44秒前
VuuVuu发布了新的文献求助10
47秒前
共享精神应助时尚的秋白采纳,获得10
48秒前
54秒前
我是老大应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
ZHI发布了新的文献求助10
1分钟前
1分钟前
sjadsqf完成签到 ,获得积分10
1分钟前
zho发布了新的文献求助10
1分钟前
格林发布了新的文献求助10
1分钟前
研友_VZG7GZ应助ZHI采纳,获得10
2分钟前
信封完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
难过的踏歌完成签到,获得积分10
3分钟前
3分钟前
jiang伟完成签到,获得积分20
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
Xiaoxiao应助科研通管家采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
Xiaoxiao应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Xiaoxiao应助科研通管家采纳,获得10
3分钟前
3分钟前
两个轮完成签到 ,获得积分10
3分钟前
Augustines完成签到,获得积分10
3分钟前
DoubleW完成签到 ,获得积分10
3分钟前
一定能成功!完成签到,获得积分10
3分钟前
sunran0完成签到 ,获得积分10
4分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555707
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390816
捐赠科研通 2831055
什么是DOI,文献DOI怎么找? 1556317
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803