E2EATP: Fast and High-Accuracy Protein–ATP Binding Residue Prediction via Protein Language Model Embedding

判别式 计算机科学 人工智能 深度学习 语言模型 卷积神经网络 机器学习 特征学习 代表(政治) 模式识别(心理学) 政治学 政治 法学
作者
B. Dharma Rao,Xuan Yu,Jie Bai,Jun Hu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (1): 289-300 被引量:3
标识
DOI:10.1021/acs.jcim.3c01298
摘要

Identifying the ATP-binding sites of proteins is fundamentally important to uncover the mechanisms of protein functions and explore drug discovery. Many computational methods are proposed to predict ATP-binding sites. However, due to the limitation of the quality of feature representation, the prediction performance still has a big room for improvement. In this study, we propose an end-to-end deep learning model, E2EATP, to dig out more discriminative information from a protein sequence for improving the ATP-binding site prediction performance. Concretely, we employ a pretrained deep learning-based protein language model (ESM2) to automatically extract high-latent discriminative representations of protein sequences relevant for protein functions. Based on ESM2, we design a residual convolutional neural network to train a protein–ATP binding site prediction model. Furthermore, a weighted focal loss function is used to reduce the negative impact of imbalanced data on the model training stage. Experimental results on the two independent testing data sets demonstrate that E2EATP could achieve higher Matthew's correlation coefficient and AUC values than most existing state-of-the-art prediction methods. The speed (about 0.05 s per protein) of E2EATP is much faster than the other existing prediction methods. Detailed data analyses show that the major advantage of E2EATP lies at the utilization of the pretrained protein language model that extracts more discriminative information from the protein sequence only. The standalone package of E2EATP is freely available for academic at https://github.com/jun-csbio/e2eatp/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luqong完成签到,获得积分10
2秒前
勤恳函完成签到,获得积分10
2秒前
情怀应助令狐磬采纳,获得10
2秒前
Sweger完成签到,获得积分10
4秒前
德尔塔捱斯完成签到 ,获得积分10
6秒前
6秒前
Lareina发布了新的文献求助10
7秒前
共享精神应助刘科江采纳,获得10
7秒前
zimablue完成签到,获得积分10
8秒前
flyqua完成签到 ,获得积分10
10秒前
12秒前
阳光傲菡完成签到 ,获得积分10
14秒前
15秒前
15秒前
没有银完成签到,获得积分10
15秒前
冬无青山完成签到,获得积分10
16秒前
喵喵666发布了新的文献求助10
17秒前
五月发布了新的文献求助10
18秒前
19秒前
传奇3应助科研通管家采纳,获得50
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
19秒前
烟花应助科研通管家采纳,获得30
19秒前
19秒前
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
19秒前
早睡早起身体好完成签到,获得积分10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
20秒前
20秒前
20秒前
原来完成签到,获得积分10
20秒前
22秒前
研友_VZG7GZ应助小杜采纳,获得10
23秒前
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162844
求助须知:如何正确求助?哪些是违规求助? 2813816
关于积分的说明 7902135
捐赠科研通 2473442
什么是DOI,文献DOI怎么找? 1316849
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187