E2EATP: Fast and High-Accuracy Protein–ATP Binding Residue Prediction via Protein Language Model Embedding

判别式 计算机科学 人工智能 深度学习 语言模型 卷积神经网络 机器学习 特征学习 代表(政治) 模式识别(心理学) 政治学 政治 法学
作者
B. Dharma Rao,Xuan Yu,Jie Bai,Jun Hu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (1): 289-300 被引量:3
标识
DOI:10.1021/acs.jcim.3c01298
摘要

Identifying the ATP-binding sites of proteins is fundamentally important to uncover the mechanisms of protein functions and explore drug discovery. Many computational methods are proposed to predict ATP-binding sites. However, due to the limitation of the quality of feature representation, the prediction performance still has a big room for improvement. In this study, we propose an end-to-end deep learning model, E2EATP, to dig out more discriminative information from a protein sequence for improving the ATP-binding site prediction performance. Concretely, we employ a pretrained deep learning-based protein language model (ESM2) to automatically extract high-latent discriminative representations of protein sequences relevant for protein functions. Based on ESM2, we design a residual convolutional neural network to train a protein–ATP binding site prediction model. Furthermore, a weighted focal loss function is used to reduce the negative impact of imbalanced data on the model training stage. Experimental results on the two independent testing data sets demonstrate that E2EATP could achieve higher Matthew's correlation coefficient and AUC values than most existing state-of-the-art prediction methods. The speed (about 0.05 s per protein) of E2EATP is much faster than the other existing prediction methods. Detailed data analyses show that the major advantage of E2EATP lies at the utilization of the pretrained protein language model that extracts more discriminative information from the protein sequence only. The standalone package of E2EATP is freely available for academic at https://github.com/jun-csbio/e2eatp/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助颠覆乾坤采纳,获得10
刚刚
1秒前
无花果应助pz采纳,获得10
1秒前
zheng完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
星辰大海应助荔枝采纳,获得10
4秒前
LJL发布了新的文献求助10
5秒前
meng发布了新的文献求助10
5秒前
无私的颤完成签到,获得积分10
5秒前
lucky完成签到 ,获得积分10
6秒前
Zel博博完成签到,获得积分10
6秒前
谷粱诗云完成签到,获得积分10
6秒前
yar应助myuniv采纳,获得10
6秒前
xc完成签到 ,获得积分10
7秒前
7秒前
干净的天与完成签到,获得积分10
7秒前
哈基米德应助毅诚菌采纳,获得10
9秒前
铁甲小杨完成签到,获得积分0
9秒前
10秒前
卡机了完成签到,获得积分10
11秒前
平淡绿柏完成签到,获得积分10
13秒前
架子猫发布了新的文献求助10
13秒前
13秒前
颠覆乾坤发布了新的文献求助10
14秒前
乔乔完成签到,获得积分10
15秒前
学术小白完成签到,获得积分10
15秒前
min完成签到,获得积分10
15秒前
15秒前
汉堡包应助slin_sjtu采纳,获得10
15秒前
czx完成签到,获得积分10
16秒前
szxnb666发布了新的文献求助30
16秒前
MRJJJJ完成签到,获得积分10
16秒前
chaser完成签到,获得积分10
16秒前
光亮白山完成签到 ,获得积分10
17秒前
科研通AI2S应助大橙子采纳,获得10
17秒前
17秒前
小马甲应助meng采纳,获得10
18秒前
pz发布了新的文献求助10
18秒前
zhou1216完成签到 ,获得积分10
19秒前
小格子完成签到,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022