Physics-informed neural networks for heat transfer prediction in two-phase flows

气泡 传热 计算流体力学 等温过程 机械 物理 职位(财务) 流体力学 相(物质) 传质 边界(拓扑) 热力学 数学 数学分析 经济 量子力学 财务
作者
Darioush Jalili,Seohee Jang,Mohammad Jadidi,Giovanni Giustini,Amir Keshmiri,Yasser Mahmoudi
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:221: 125089-125089 被引量:18
标识
DOI:10.1016/j.ijheatmasstransfer.2023.125089
摘要

This paper presents data-driven simulations of two-phase fluid processes with heat transfer. A Physics-Informed Neural Network (PINN) was applied to capture the behaviour of phase interfaces in two-phase flows and model the hydrodynamics and heat transfer of flow configurations representative of established numerical test cases. The developed PINN approach was trained on simulation data derived from physically based Computational Fluid Dynamics (CFD) simulations with interface capturing. The present study considers fundamental problems, including tracking the rise of a single gas bubble in a denser fluid and exploring the heat transfer in the wake of a bubble rising close to a heated wall. Tracking of a rising bubble phase interface of fluids with disparate properties was performed, revealing a maximum error of only 5.2% at the interface edge and a maximum error of 2.8% at the position of the centre of mass. Inferred (hidden variable) flows are studied in addition to a purely extrapolative inverse isothermal bubble case. When no velocity data was supplied, velocity field predictions remained accurate. Rise of an inferred isothermal bubble with unseen fluid properties was found to produce a maximum mean-squared error of 0.28 and centre of mass error of 1.25%. For the case of the rising bubble with a hot wall, the maximum error in the temperature domain using specified boundary conditions was 6.8%, while the bubble position analysis reveals a maximum positional error of 3.6%. These results demonstrate that PINN is agnostic to geometry and fluid properties when studying the combined effects of convection and buoyancy on two-phase flows for the first time. This work serves as a starting point for PINN in multiphase cases involving heat transfer over a range of geometries. Eventually, PINN will be used in such cases to provide solutions for forward, inverse, and extrapolative cases. Each of which represent a dramatic saving in computational cost compared to traditional CFD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助小羊吃Lemon采纳,获得10
1秒前
娟儿完成签到,获得积分10
1秒前
pluto应助聪明盈采纳,获得30
1秒前
2秒前
大福完成签到,获得积分10
2秒前
坚定的亦绿完成签到,获得积分10
3秒前
小艾完成签到,获得积分10
3秒前
3秒前
翰林发布了新的文献求助10
3秒前
5秒前
脑洞疼应助llw198611采纳,获得10
6秒前
梨花雨凉完成签到 ,获得积分10
6秒前
科研通AI2S应助壮观以松采纳,获得10
7秒前
大模型应助桃子采纳,获得10
7秒前
充电宝应助毅宁静610采纳,获得10
7秒前
你好啊完成签到,获得积分10
7秒前
专注的小松鼠完成签到,获得积分10
9秒前
Komorebi完成签到,获得积分10
9秒前
太叔白风完成签到,获得积分10
9秒前
9秒前
lgh完成签到,获得积分10
10秒前
rrrrr发布了新的文献求助10
11秒前
务实妖妖完成签到,获得积分10
12秒前
复杂尔蓝完成签到,获得积分10
12秒前
12秒前
Zhou完成签到,获得积分10
13秒前
14秒前
杨老师完成签到 ,获得积分10
14秒前
研友_nqv2WZ完成签到,获得积分10
14秒前
Stvbborn完成签到 ,获得积分10
14秒前
orixero应助内向映安采纳,获得10
14秒前
芝芝完成签到,获得积分10
15秒前
Mess完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
愉快的易形完成签到,获得积分10
16秒前
17秒前
milan001发布了新的文献求助10
17秒前
18秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
More activities for teaching positive psychology: A guide for instructors 700
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3402578
求助须知:如何正确求助?哪些是违规求助? 3009466
关于积分的说明 8836935
捐赠科研通 2696411
什么是DOI,文献DOI怎么找? 1477859
科研通“疑难数据库(出版商)”最低求助积分说明 683261
邀请新用户注册赠送积分活动 676986