Temporal Protein Complex Identification Based on Dynamic Heterogeneous Protein Information Network Representation Learning

计算机科学 生物网络 代表(政治) 鉴定(生物学) 语义学(计算机科学) 异构网络 人工智能 一致性(知识库) 理论计算机科学 机器学习 数据挖掘 计算生物学 生物 电信 植物 无线网络 政治 政治学 法学 无线 程序设计语言
作者
Zeqian Li,Yijia Zhang,Peixuan Zhou
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 1154-1164 被引量:1
标识
DOI:10.1109/tcbb.2024.3351078
摘要

Protein complexes, as the fundamental units of cellular function and regulation, play a crucial role in understanding the normal physiological functions of cells. Existing methods for protein complex identification attempt to introduce other biological information on top of the protein-protein interaction (PPI) network to assist in evaluating the degree of association between proteins. However, these methods usually treat protein interaction networks as flat homogeneous static networks. They cannot distinguish the roles and importance of different types of biological information, nor can they reflect the dynamic changes of protein complexes. In recent years, heterogeneous network representation learning has achieved great success in processing complex heterogeneous information and mining deep semantics. We thus propose a temporal protein complex identification method based on Dynamic Heterogeneous Protein information network Representation Learning, DHPRL. DHPRL naturally integrates multiple types of heterogeneous biological information in the cellular temporal dimension. It simultaneously models the temporal dynamic properties of proteins and the heterogeneity of biological information to improve the understanding of protein interactions and the accuracy of complex prediction. Firstly, we construct Dynamic Heterogeneous Protein Information Network (DHPIN) by integrating temporal gene expression information and GO attribute information. Then we design a dual-view collaborative contrast mechanism. Specifically, proposing to learn protein representations from two views of DHPIN (1-hop relation view and meta-path view) to model the consistency and specificity between nearest-neighbour bio information and deeper biological semantics. The dynamic PPI network is thereafter re-weighted based on the learned protein representations. Finally, we perform protein identification on the re-weighted dynamic PPI network. Extensive experimental results demonstrate that DHPRL can effectively model complicated biological information and achieve state-of-the-art performance in most cases. The source code and datasets for DHPR are available at https://github.com/LI-jasm/DHPRL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Orange应助jackie采纳,获得10
7秒前
7秒前
lihaifeng完成签到,获得积分10
7秒前
冬冬发布了新的文献求助10
10秒前
模糊中正应助个性的乐驹采纳,获得20
10秒前
12秒前
Yifan2024应助mmichaell采纳,获得20
13秒前
852应助lihaifeng采纳,获得10
16秒前
16秒前
浅池星完成签到 ,获得积分10
17秒前
18秒前
19秒前
流浪汉完成签到,获得积分10
20秒前
22秒前
23秒前
流浪汉发布了新的文献求助30
23秒前
叶123发布了新的文献求助10
23秒前
纯真凡波完成签到,获得积分10
24秒前
24秒前
冬冬完成签到 ,获得积分10
24秒前
黄百川完成签到 ,获得积分10
26秒前
文静发布了新的文献求助10
26秒前
carryxu发布了新的文献求助10
28秒前
Jasper应助纯真凡波采纳,获得30
29秒前
29秒前
kk完成签到,获得积分10
30秒前
30秒前
上官若男应助叶123采纳,获得10
32秒前
34秒前
Dskelf发布了新的文献求助10
34秒前
34秒前
splaker7完成签到,获得积分10
35秒前
顺利安发布了新的文献求助10
35秒前
Owen应助YXH采纳,获得10
37秒前
雪轩发布了新的文献求助10
38秒前
李健的小迷弟应助叶成帷采纳,获得10
38秒前
39秒前
罗伊黄完成签到 ,获得积分10
41秒前
文静发布了新的文献求助10
45秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Academic Capitalism and the New Economy: Markets, State, and Higher Education 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3375862
求助须知:如何正确求助?哪些是违规求助? 2992254
关于积分的说明 8749935
捐赠科研通 2676510
什么是DOI,文献DOI怎么找? 1466124
科研通“疑难数据库(出版商)”最低求助积分说明 678131
邀请新用户注册赠送积分活动 669801