计算机科学
人工智能
卷积神经网络
工作量
深度学习
特征(语言学)
断裂(地质)
椎骨
压缩(物理)
腰椎
椎体压缩性骨折
机制(生物学)
椎体
医学
放射科
外科
工程类
哲学
语言学
材料科学
岩土工程
认识论
复合材料
操作系统
作者
Yurim Lee,Eunho Lee,Il‐Tae Jang
标识
DOI:10.1109/embc40787.2023.10340261
摘要
Vertebral Compression Fracture (VCF) is one of the common fractures, especially for elderlies. As it affects postural deformation that may cause secondary disorders in the respiratory or digestive system if not treated in time, diagnosis of VCF is crucial. Using deep learning model based detection technology in diagnosis can reduce the workload of healthcare workers and misdiagnosis. Hence in this work, we propose ALiGN, a compression fracture detection model in the lumbar vertebra based on a deep convolutional neural network (CNN). Specifically, we take the location of each vertebral body into account via a feature pyramid network with an attention mechanism. Our proposed model outperforms the earlier works with a sensitivity 0.9729, specificity 0.9914, and mAP 0.7882.
科研通智能强力驱动
Strongly Powered by AbleSci AI