根际
地衣芽孢杆菌
接种
开枪
丙二醛
抗氧化剂
超氧化物歧化酶
食品科学
微生物
园艺
生物
微生物学
化学
细菌
生物化学
枯草芽孢杆菌
遗传学
作者
Rong Zeng,Huaiting Liu,Zhiqi Hong,Wang Xiu,Shujun Cheng,Jianming Xu,Zhongmin Dai
标识
DOI:10.1016/j.jenvman.2023.119739
摘要
There have been studies reporting the effects of multiple bacterial strains on the Cd/As immobilization and transformation in culture media. However, there is limited research to validate the effects of microbial strain combination on plant Cd/As accumulation and antioxidant system in the soil-plant system. By planting the rice (Zhefu 7) with the co-inoculation of bacterial strains (i.e. Bacillus licheniformis and Pseudomonas aeruginosa) after two months with the contaminations of Cd (2 mg/kg), As (80 mg/kg) and Cd + As (2 + 80 mg/kg), we found that the bacterial co-inoculation decreased Cd concentrations in the rhizosphere soil porewater, but had limited effects on mitigating plant Cd accumulation. By contrast, the co-inoculation did not affect the As(III) and As(V) concentrations in the rhizosphere soil porewater, but decreased As(III) and As(V) concentrations by 17% and 17% in the root respectively and by 17% and 37% in rice shoot respectively. Using DNA sequencing, we found the increased abundance in both exogenous Bacillus licheniformis and native microorganisms, indicating that the added strains had synergetic interactions with soil native microorganisms. Regarding on plant antioxidant enzyme system, the bacterial co-inoculation decreased the concentrations of superoxide dismutase (SOD), hydrogen peroxide (H2O2) and malondialdehyde (MDA) by 75%, 74% and 22%, mitigating the As damage to rice root and promote plant growth. However, under Cd and As co-stress, the effects of co-inoculation on mitigating plant As accumulation and enhancing plant stress resistance appear to be diminished. Our findings underscore the importance of microbial co-inoculation in reducing plant As accumulation and preserving plant health under heavy metal stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI