Federated Domain Adaptation via Transformer for Multi-Site Alzheimer’s Disease Diagnosis

计算机科学 域适应 适应(眼睛) 数据挖掘 变压器 标记数据 人工智能 机器学习 相关性 几何学 数学 量子力学 分类器(UML) 光学 物理 电压
作者
Baiying Lei,Yun Zhu,Enmin Liang,Peng Yang,Shaobin Chen,Huoyou Hu,Haoran Xie,Ziyi Wei,Fei Hao,Xuegang Song,Tianfu Wang,Xiaohua Xiao,Shuqiang Wang,Hongbin Han
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3651-3664 被引量:29
标识
DOI:10.1109/tmi.2023.3300725
摘要

In multi-site studies of Alzheimer's disease (AD), the difference of data in multi-site datasets leads to the degraded performance of models in the target sites. The traditional domain adaptation method requires sharing data from both source and target domains, which will lead to data privacy issue. To solve it, federated learning is adopted as it can allow models to be trained with multi-site data in a privacy-protected manner. In this paper, we propose a multi-site federated domain adaptation framework via Transformer (FedDAvT), which not only protects data privacy, but also eliminates data heterogeneity. The Transformer network is used as the backbone network to extract the correlation between the multi-template region of interest features, which can capture the brain abundant information. The self-attention maps in the source and target domains are aligned by applying mean squared error for subdomain adaptation. Finally, we evaluate our method on the multi-site databases based on three AD datasets. The experimental results show that the proposed FedDAvT is quite effective, achieving accuracy rates of 88.75%, 69.51%, and 69.88% on the AD vs. NC, MCI vs. NC, and AD vs. MCI two-way classification tasks, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YYY发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
爆米花应助ZIYU采纳,获得10
1秒前
ss发布了新的文献求助10
1秒前
dique3hao发布了新的文献求助10
1秒前
1秒前
2秒前
气质复杂发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
Ava应助强健的元冬采纳,获得10
3秒前
Doris完成签到,获得积分10
3秒前
淡定傲儿完成签到,获得积分10
3秒前
GLM发布了新的文献求助10
3秒前
魔幻安筠发布了新的文献求助10
4秒前
涛涛发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
IU丞完成签到,获得积分10
5秒前
5秒前
我是老大应助gy采纳,获得10
6秒前
y1439938345发布了新的文献求助10
6秒前
无心的月亮完成签到,获得积分10
6秒前
meng发布了新的文献求助10
6秒前
sifLiu发布了新的文献求助30
6秒前
YYY完成签到,获得积分10
6秒前
完美世界应助银鱼在游采纳,获得10
6秒前
6秒前
余九完成签到 ,获得积分10
7秒前
8秒前
动听的海亦完成签到,获得积分10
8秒前
wwy应助阿馨采纳,获得30
9秒前
芒果豆豆发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
CMUSK完成签到 ,获得积分10
9秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444