清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Federated Domain Adaptation via Transformer for Multi-Site Alzheimer’s Disease Diagnosis

计算机科学 域适应 适应(眼睛) 数据挖掘 变压器 标记数据 人工智能 机器学习 相关性 几何学 数学 量子力学 分类器(UML) 光学 物理 电压
作者
Baiying Lei,Yun Zhu,Enmin Liang,Peng Yang,Shaobin Chen,Huoyou Hu,Haoran Xie,Ziyi Wei,Fei Hao,Xuegang Song,Tianfu Wang,Xiaohua Xiao,Shuqiang Wang,Hongbin Han
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3651-3664 被引量:29
标识
DOI:10.1109/tmi.2023.3300725
摘要

In multi-site studies of Alzheimer's disease (AD), the difference of data in multi-site datasets leads to the degraded performance of models in the target sites. The traditional domain adaptation method requires sharing data from both source and target domains, which will lead to data privacy issue. To solve it, federated learning is adopted as it can allow models to be trained with multi-site data in a privacy-protected manner. In this paper, we propose a multi-site federated domain adaptation framework via Transformer (FedDAvT), which not only protects data privacy, but also eliminates data heterogeneity. The Transformer network is used as the backbone network to extract the correlation between the multi-template region of interest features, which can capture the brain abundant information. The self-attention maps in the source and target domains are aligned by applying mean squared error for subdomain adaptation. Finally, we evaluate our method on the multi-site databases based on three AD datasets. The experimental results show that the proposed FedDAvT is quite effective, achieving accuracy rates of 88.75%, 69.51%, and 69.88% on the AD vs. NC, MCI vs. NC, and AD vs. MCI two-way classification tasks, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JT完成签到,获得积分20
1秒前
葱葱花卷完成签到 ,获得积分10
13秒前
来路遥迢完成签到,获得积分10
45秒前
48秒前
lsh完成签到,获得积分10
49秒前
量子星尘发布了新的文献求助10
1分钟前
苏苏苏发布了新的文献求助10
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
脑洞疼应助蓝色花园采纳,获得10
2分钟前
星辰大海应助叶潭采纳,获得10
2分钟前
2分钟前
Axel发布了新的文献求助10
2分钟前
蓝色花园发布了新的文献求助10
2分钟前
2分钟前
叶潭发布了新的文献求助10
2分钟前
tian123完成签到,获得积分10
2分钟前
苏苏苏发布了新的文献求助10
2分钟前
田様应助直率觅松采纳,获得40
3分钟前
老石完成签到 ,获得积分10
4分钟前
搞怪的山水完成签到,获得积分10
4分钟前
所所应助搞怪的山水采纳,获得10
4分钟前
uug关闭了uug文献求助
4分钟前
krajicek发布了新的文献求助10
4分钟前
Lucas应助lebron采纳,获得10
5分钟前
krajicek完成签到,获得积分10
5分钟前
RRRickyyy完成签到 ,获得积分10
5分钟前
复杂的可乐完成签到 ,获得积分10
5分钟前
Axel完成签到,获得积分10
5分钟前
5分钟前
5分钟前
领导范儿应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
xiaoblue完成签到,获得积分10
6分钟前
落尘府完成签到 ,获得积分10
7分钟前
7分钟前
虚拟的成仁完成签到 ,获得积分10
7分钟前
随心所欲完成签到 ,获得积分10
7分钟前
在水一方应助超帅的天曼采纳,获得10
7分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450143
求助须知:如何正确求助?哪些是违规求助? 4558027
关于积分的说明 14265313
捐赠科研通 4481416
什么是DOI,文献DOI怎么找? 2454798
邀请新用户注册赠送积分活动 1445587
关于科研通互助平台的介绍 1421512