Federated Domain Adaptation via Transformer for Multi-Site Alzheimer’s Disease Diagnosis

计算机科学 域适应 适应(眼睛) 数据挖掘 变压器 标记数据 人工智能 机器学习 相关性 几何学 数学 量子力学 分类器(UML) 光学 物理 电压
作者
Baiying Lei,Yun Zhu,Enmin Liang,Peng Yang,Shaobin Chen,Huoyou Hu,Haoran Xie,Ziyi Wei,Fei Hao,Xuegang Song,Tianfu Wang,Xiaohua Xiao,Shuqiang Wang,Hongbin Han
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3651-3664 被引量:18
标识
DOI:10.1109/tmi.2023.3300725
摘要

In multi-site studies of Alzheimer's disease (AD), the difference of data in multi-site datasets leads to the degraded performance of models in the target sites. The traditional domain adaptation method requires sharing data from both source and target domains, which will lead to data privacy issue. To solve it, federated learning is adopted as it can allow models to be trained with multi-site data in a privacy-protected manner. In this paper, we propose a multi-site federated domain adaptation framework via Transformer (FedDAvT), which not only protects data privacy, but also eliminates data heterogeneity. The Transformer network is used as the backbone network to extract the correlation between the multi-template region of interest features, which can capture the brain abundant information. The self-attention maps in the source and target domains are aligned by applying mean squared error for subdomain adaptation. Finally, we evaluate our method on the multi-site databases based on three AD datasets. The experimental results show that the proposed FedDAvT is quite effective, achieving accuracy rates of 88.75%, 69.51%, and 69.88% on the AD vs. NC, MCI vs. NC, and AD vs. MCI two-way classification tasks, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
songcy7发布了新的文献求助10
3秒前
3秒前
脑洞疼应助白昼采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
zmj完成签到,获得积分10
7秒前
8秒前
搞怪斑马发布了新的文献求助10
8秒前
zhangmin发布了新的文献求助10
8秒前
万老头发布了新的文献求助10
9秒前
自觉小凡发布了新的文献求助20
9秒前
10秒前
kk完成签到,获得积分10
10秒前
ranjeah完成签到 ,获得积分10
10秒前
11秒前
得之我幸完成签到,获得积分10
12秒前
13秒前
激情的自行车完成签到,获得积分10
14秒前
14秒前
白蓝红完成签到 ,获得积分10
14秒前
15秒前
15秒前
15秒前
JamesPei应助科研小白采纳,获得10
16秒前
深情安青应助runtang采纳,获得30
16秒前
songcy7完成签到,获得积分10
16秒前
烟花应助六芒星采纳,获得10
17秒前
andy_lee发布了新的文献求助10
17秒前
18秒前
司徒水绿完成签到 ,获得积分10
18秒前
嘻嘻嘻发布了新的文献求助10
18秒前
削皮柚子发布了新的文献求助10
19秒前
俭朴蜜蜂发布了新的文献求助200
20秒前
依夏祭完成签到,获得积分10
21秒前
cc完成签到 ,获得积分10
21秒前
21秒前
天天快乐应助粤十一采纳,获得10
22秒前
YiJin_Wang发布了新的文献求助10
23秒前
乐情发布了新的文献求助20
23秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578059
求助须知:如何正确求助?哪些是违规求助? 3997093
关于积分的说明 12374500
捐赠科研通 3671156
什么是DOI,文献DOI怎么找? 2023295
邀请新用户注册赠送积分活动 1057253
科研通“疑难数据库(出版商)”最低求助积分说明 944206