亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Federated Domain Adaptation via Transformer for Multi-Site Alzheimer’s Disease Diagnosis

计算机科学 域适应 适应(眼睛) 数据挖掘 变压器 标记数据 人工智能 机器学习 相关性 几何学 数学 量子力学 分类器(UML) 光学 物理 电压
作者
Baiying Lei,Yun Zhu,Enmin Liang,Peng Yang,Shaobin Chen,Huoyou Hu,Haoran Xie,Ziyi Wei,Fei Hao,Xuegang Song,Tianfu Wang,Xiaohua Xiao,Shuqiang Wang,Hongbin Han
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3651-3664 被引量:29
标识
DOI:10.1109/tmi.2023.3300725
摘要

In multi-site studies of Alzheimer's disease (AD), the difference of data in multi-site datasets leads to the degraded performance of models in the target sites. The traditional domain adaptation method requires sharing data from both source and target domains, which will lead to data privacy issue. To solve it, federated learning is adopted as it can allow models to be trained with multi-site data in a privacy-protected manner. In this paper, we propose a multi-site federated domain adaptation framework via Transformer (FedDAvT), which not only protects data privacy, but also eliminates data heterogeneity. The Transformer network is used as the backbone network to extract the correlation between the multi-template region of interest features, which can capture the brain abundant information. The self-attention maps in the source and target domains are aligned by applying mean squared error for subdomain adaptation. Finally, we evaluate our method on the multi-site databases based on three AD datasets. The experimental results show that the proposed FedDAvT is quite effective, achieving accuracy rates of 88.75%, 69.51%, and 69.88% on the AD vs. NC, MCI vs. NC, and AD vs. MCI two-way classification tasks, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Frank应助舒适焦采纳,获得10
2秒前
8秒前
慕青应助kshuizhuyu采纳,获得10
9秒前
octavia完成签到,获得积分10
10秒前
11发布了新的文献求助10
12秒前
13秒前
kshuizhuyu完成签到,获得积分10
17秒前
浩气长存完成签到 ,获得积分10
21秒前
22秒前
24秒前
SciGPT应助过氧化氢采纳,获得10
36秒前
43秒前
47秒前
LukeLion发布了新的文献求助10
49秒前
52秒前
废久发布了新的文献求助10
53秒前
55秒前
57秒前
1分钟前
octavia发布了新的文献求助10
1分钟前
LukeLion发布了新的文献求助10
1分钟前
1分钟前
11发布了新的文献求助10
1分钟前
初晴完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
过氧化氢发布了新的文献求助10
1分钟前
1分钟前
11发布了新的文献求助10
1分钟前
LukeLion发布了新的文献求助10
1分钟前
1分钟前
TongKY完成签到 ,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
loitinsuen应助科研通管家采纳,获得10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522699
求助须知:如何正确求助?哪些是违规求助? 4613657
关于积分的说明 14539118
捐赠科研通 4551368
什么是DOI,文献DOI怎么找? 2494224
邀请新用户注册赠送积分活动 1475142
关于科研通互助平台的介绍 1446542