Shield Tail Seal Detection Method Based on Twin Simulation Model for Smart Shield

护盾 计算机科学 印章(徽章) 集合(抽象数据类型) 国家(计算机科学) 模拟 可靠性(半导体) 人工智能 算法 地质学 物理 岩石学 艺术 功率(物理) 量子力学 视觉艺术 程序设计语言
作者
Lintao Wang,Zikang Liu,Ning Hao,Meng Gao,Zihan Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 107-118
标识
DOI:10.1007/978-981-99-6480-2_9
摘要

The tail sealing system of the shield machine is an important guarantee to ensure the tunneling of the shield machine underground. The safety warning of the shield tail sealing system is an important part of the intelligent shield machine, a prerequisite for the attitude adjustment of the shield machine and an important reference for the segment intelligent assembly robot. However, since the shield tail seal system works underground, it is difficult to construct experiments to verify the sealing performance and working state, so there is no mature Detection method for the shield tail seal. Therefore, this paper proposes a new detection method based on twin simulation-driven shield tail seal working status. First, a part of the working condition data of the existing construction site is selected as the training set of the simulation model to establish a twin simulation model, and then the reliability of the model is verified by using the verification set data. Then, based on this twin system, a large number of sample points are randomly selected for simulation to obtain corresponding data sets, so as to obtain the parameter range and corresponding relationship of various working states of the shield tail. Then according to the corresponding relationship between these data sets and states, a BP neural network detection and classification model is established. Finally, the twin simulation model is set to a new working condition, and the data generated by the simulation under this working condition is placed in the classification model to judge the working state, so as to verify the reliability of the detection model. The results showed that the detection accuracy was as high as 99.2%, which verified the reliability of the detection method. In short, the detection system has good stability and reliability, and meets the expected requirements of the design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenyunxia完成签到,获得积分10
1秒前
轻松绿旋完成签到,获得积分10
2秒前
3秒前
sevenlalala完成签到,获得积分10
4秒前
ysssbq完成签到,获得积分10
6秒前
等待城完成签到 ,获得积分10
6秒前
扶风阁主发布了新的文献求助10
8秒前
炙热的羽毛完成签到,获得积分10
8秒前
甜甜的以筠完成签到 ,获得积分10
8秒前
恶恶么v完成签到,获得积分10
9秒前
刘雪松完成签到,获得积分10
10秒前
吴乐盈发布了新的文献求助10
10秒前
liuguohua126完成签到,获得积分10
11秒前
dadazhou完成签到,获得积分10
12秒前
taoyanhui完成签到,获得积分10
12秒前
谨慎翎完成签到 ,获得积分10
13秒前
淡然的晓旋完成签到 ,获得积分10
13秒前
小马甲应助Debra采纳,获得10
14秒前
英勇的半兰完成签到,获得积分10
14秒前
WSY完成签到 ,获得积分10
14秒前
Iris完成签到 ,获得积分10
14秒前
害羞的天真完成签到 ,获得积分10
14秒前
跳跃的访琴完成签到 ,获得积分10
16秒前
小栗发布了新的文献求助30
17秒前
19秒前
万万完成签到 ,获得积分10
19秒前
扶风阁主完成签到,获得积分10
19秒前
王小雨完成签到 ,获得积分10
20秒前
SXYYY完成签到,获得积分10
20秒前
小绵羊完成签到,获得积分20
20秒前
大模型应助杨榆藤采纳,获得10
21秒前
1111完成签到,获得积分10
21秒前
kk99123应助竹简采纳,获得10
22秒前
morry5007完成签到,获得积分10
22秒前
kathy完成签到,获得积分10
23秒前
酷波er应助科研通管家采纳,获得100
23秒前
LPPQBB应助科研通管家采纳,获得30
23秒前
小蘑菇应助科研通管家采纳,获得30
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
星辰大海应助科研通管家采纳,获得10
24秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347734
求助须知:如何正确求助?哪些是违规求助? 4482003
关于积分的说明 13948481
捐赠科研通 4380368
什么是DOI,文献DOI怎么找? 2406916
邀请新用户注册赠送积分活动 1399501
关于科研通互助平台的介绍 1372698