亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Shield Tail Seal Detection Method Based on Twin Simulation Model for Smart Shield

护盾 计算机科学 印章(徽章) 集合(抽象数据类型) 国家(计算机科学) 模拟 可靠性(半导体) 人工智能 算法 地质学 物理 艺术 视觉艺术 功率(物理) 量子力学 程序设计语言 岩石学
作者
Lintao Wang,Zikang Liu,Ning Hao,Meng Gao,Zihan Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 107-118
标识
DOI:10.1007/978-981-99-6480-2_9
摘要

The tail sealing system of the shield machine is an important guarantee to ensure the tunneling of the shield machine underground. The safety warning of the shield tail sealing system is an important part of the intelligent shield machine, a prerequisite for the attitude adjustment of the shield machine and an important reference for the segment intelligent assembly robot. However, since the shield tail seal system works underground, it is difficult to construct experiments to verify the sealing performance and working state, so there is no mature Detection method for the shield tail seal. Therefore, this paper proposes a new detection method based on twin simulation-driven shield tail seal working status. First, a part of the working condition data of the existing construction site is selected as the training set of the simulation model to establish a twin simulation model, and then the reliability of the model is verified by using the verification set data. Then, based on this twin system, a large number of sample points are randomly selected for simulation to obtain corresponding data sets, so as to obtain the parameter range and corresponding relationship of various working states of the shield tail. Then according to the corresponding relationship between these data sets and states, a BP neural network detection and classification model is established. Finally, the twin simulation model is set to a new working condition, and the data generated by the simulation under this working condition is placed in the classification model to judge the working state, so as to verify the reliability of the detection model. The results showed that the detection accuracy was as high as 99.2%, which verified the reliability of the detection method. In short, the detection system has good stability and reliability, and meets the expected requirements of the design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独靖柏发布了新的文献求助10
24秒前
丘比特应助孤独靖柏采纳,获得10
38秒前
鬼见愁应助Wei采纳,获得10
48秒前
49秒前
1分钟前
傅夜山发布了新的文献求助30
1分钟前
wangsiheng发布了新的文献求助10
1分钟前
wangsiheng完成签到,获得积分20
1分钟前
dormraider完成签到,获得积分10
2分钟前
充电宝应助yang采纳,获得10
2分钟前
丘比特应助傅夜山采纳,获得10
3分钟前
狂奔的蜗牛完成签到,获得积分10
3分钟前
3分钟前
卓头OvQ发布了新的文献求助10
4分钟前
卓头OvQ完成签到,获得积分10
4分钟前
李健应助科研通管家采纳,获得20
4分钟前
丘比特应助傅夜山采纳,获得30
4分钟前
4分钟前
yang发布了新的文献求助10
4分钟前
5分钟前
lixuebin完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
yang完成签到,获得积分10
5分钟前
千里草完成签到,获得积分10
6分钟前
8分钟前
虞鱼瑜发布了新的文献求助10
8分钟前
8分钟前
8分钟前
傅夜山发布了新的文献求助10
8分钟前
丫丫完成签到,获得积分10
8分钟前
Echopotter发布了新的文献求助30
8分钟前
Echopotter完成签到,获得积分10
9分钟前
10分钟前
丫丫发布了新的文献求助20
10分钟前
淡淡醉波wuliao完成签到 ,获得积分10
10分钟前
学习使勇哥进步完成签到 ,获得积分10
10分钟前
Owen应助虞鱼瑜采纳,获得10
10分钟前
gszy1975完成签到,获得积分10
10分钟前
傅夜山发布了新的文献求助30
10分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171568
求助须知:如何正确求助?哪些是违规求助? 2822431
关于积分的说明 7939235
捐赠科研通 2483077
什么是DOI,文献DOI怎么找? 1322935
科研通“疑难数据库(出版商)”最低求助积分说明 633809
版权声明 602647