A multi-feature fusion model based on differential thermal capacity for prediction of the health status of lithium-ion batteries

计算机科学 乙状窦函数 粒子群优化 电压 人工智能 算法 工程类 人工神经网络 电气工程
作者
Hailin Feng,Ningjuan Li
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108419-108419 被引量:2
标识
DOI:10.1016/j.est.2023.108419
摘要

Accurate prediction of the SOH (state of health) of lithium-ion batteries is still a key problem in the safe application of lithium-ion batteries. A new multi-feature fusion SOH prediction method, SRLF-CHI-AdaPSOELM, is proposed based on differential thermal capacity (DTC). DTC is a data representation that integrates the capacity, surface temperature, and voltage information that directly affect the health of the Li-ion battery. But the DTC has a complex trajectory, strong nonlinearity, and large noise. Therefore, a new function model (S-RLF) is established, which is expressed as a sigmoid model with an exponential and a Lorentz-rational function model to represent DTC in different voltage segments. As verified by public datasets, the proposed S-RLF can well express the key features of DTC, such as peak value and area. Then two new lithium-ion battery health indicators (HI) are extracted from the RLF parameters, further a fusion health indicator (CHI) is established by canonical correlation analysis. CHI eliminates the redundancy of the RLF model parameters and can be better used to accurately predict SOH. Then a new SOH prediction model (Ada-PSOELM) based on an extreme learning machine (ELM) is established. The input parameters of the ELM are optimized by the particle swarm optimization (PSO) algorithm, and an AdaBoost algorithm is introduced to integrate multiple PSO-ELM weak predictors to enhance the generalizability of SOH prediction. Finally, the prediction results are compared with other models on different lithium-ion battery datasets. The results show that the MAE of the SRLF-CHI-AdaPSOELM model is below 0.5%, which verifies the high accuracy and robustness of the model on both large-cycle and small-cycle lithium-ion battery datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
默默向雪完成签到,获得积分10
2秒前
Ara发布了新的文献求助30
3秒前
认真果汁发布了新的文献求助10
5秒前
小小发布了新的文献求助10
5秒前
6秒前
yanqs完成签到,获得积分20
6秒前
Leon_nomoreLess完成签到 ,获得积分10
6秒前
远山完成签到,获得积分10
9秒前
9秒前
Logan完成签到,获得积分10
11秒前
安安完成签到 ,获得积分10
11秒前
zhaopangpang发布了新的文献求助10
12秒前
科研通AI2S应助欣喜晓夏采纳,获得10
12秒前
yql完成签到,获得积分10
13秒前
小黄完成签到,获得积分20
13秒前
MeSs完成签到 ,获得积分10
14秒前
JamesPei应助科研通管家采纳,获得10
15秒前
zhikaiyici应助科研通管家采纳,获得10
15秒前
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
zhikaiyici应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
Mercury完成签到,获得积分10
16秒前
17秒前
19秒前
cyt9999发布了新的文献求助10
19秒前
谨慎的爆米花完成签到 ,获得积分20
19秒前
乐乐应助黑骑士采纳,获得10
20秒前
poison完成签到 ,获得积分10
21秒前
21秒前
呜呜呜呜完成签到,获得积分10
22秒前
郝宝真发布了新的文献求助10
23秒前
科研通AI2S应助zhaopangpang采纳,获得10
24秒前
24秒前
郑思榆完成签到 ,获得积分10
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163027
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902818
捐赠科研通 2473633
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187