A new oversampling approach based differential evolution on the safe set for highly imbalanced datasets

过采样 计算机科学 模式识别(心理学) 人工智能 稳健性(进化) 公制(单位) 支持向量机 集合(抽象数据类型) 数据挖掘 机器学习 生物化学 带宽(计算) 经济 基因 化学 运营管理 计算机网络 程序设计语言
作者
Jiaoni Zhang,Yanying Li,Baoshuang Zhang,Xialin Wang,Huanhuan Gong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:234: 121039-121039 被引量:3
标识
DOI:10.1016/j.eswa.2023.121039
摘要

Oversampling method is used to solve the class imbalanced issues. Some existing oversampling methods do not well remove noisy samples and avoid synthesizing noisy samples. Therefore, we propose a new oversampling approach based differential evolution on the safe set for highly imbalanced datasets (SS_DEBOHID). SS_DEBOHID firstly uses k-nearest neighbors (kNN) method to learn the safe area of minority; then the DEBOHID oversampling method is used to synthesize new minority samples in the safe area. The advantages of SS_DEBOHID include that (a) it generates samples in the safe area to reduce generation of noisy samples and reduce synthetic samples falling into the classification boundary and majority area; (b) it uses the DEBOHID method to synthesize samples and increase the diversity of samples; (c) the method is suitable for highly imbalanced datasets. The proposed method is compared with 10 methods on 43 highly imbalanced datasets and evaluated on AUC and G_Mean metrics. The experimental results show that SS_DEBOHID obtains more than 30 best performing datasets on KNN, SVM, and DT classifiers in terms of AUC and G_mean, respectively. The proposed method outperforms other methods by 8.07% to 24.34% on average AUC metric and by at least 6.96% and up to 45.37% on average G_mean metric. In addition, we validate the efficiency of SS_DEBOHID on 8 high-dimensional and large sample size datasets. The experimental results show that SS_DEBOHID has better classification performance and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助brian0326采纳,获得10
1秒前
幽默的季节完成签到,获得积分10
1秒前
jam完成签到,获得积分10
1秒前
1秒前
孙总完成签到,获得积分10
3秒前
3秒前
xq发布了新的文献求助10
4秒前
5秒前
顾矜应助幽默的季节采纳,获得10
7秒前
达尔文发布了新的文献求助10
8秒前
9秒前
茫123456完成签到,获得积分10
10秒前
hxb发布了新的文献求助10
10秒前
10秒前
11秒前
HUA完成签到,获得积分10
11秒前
12秒前
Annie应助于鹏采纳,获得10
13秒前
13秒前
13秒前
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
风清扬发布了新的文献求助10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
star应助科研通管家采纳,获得150
14秒前
Hello应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
14秒前
ccm应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
胍基发布了新的文献求助30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289127
求助须知:如何正确求助?哪些是违规求助? 4440879
关于积分的说明 13825797
捐赠科研通 4323161
什么是DOI,文献DOI怎么找? 2372993
邀请新用户注册赠送积分活动 1368430
关于科研通互助平台的介绍 1332352