A new oversampling approach based differential evolution on the safe set for highly imbalanced datasets

过采样 计算机科学 模式识别(心理学) 人工智能 稳健性(进化) 公制(单位) 支持向量机 集合(抽象数据类型) 数据挖掘 机器学习 带宽(计算) 程序设计语言 化学 经济 基因 生物化学 计算机网络 运营管理
作者
Jiaoni Zhang,Yanying Li,Baoshuang Zhang,Xialin Wang,Huanhuan Gong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:234: 121039-121039 被引量:3
标识
DOI:10.1016/j.eswa.2023.121039
摘要

Oversampling method is used to solve the class imbalanced issues. Some existing oversampling methods do not well remove noisy samples and avoid synthesizing noisy samples. Therefore, we propose a new oversampling approach based differential evolution on the safe set for highly imbalanced datasets (SS_DEBOHID). SS_DEBOHID firstly uses k-nearest neighbors (kNN) method to learn the safe area of minority; then the DEBOHID oversampling method is used to synthesize new minority samples in the safe area. The advantages of SS_DEBOHID include that (a) it generates samples in the safe area to reduce generation of noisy samples and reduce synthetic samples falling into the classification boundary and majority area; (b) it uses the DEBOHID method to synthesize samples and increase the diversity of samples; (c) the method is suitable for highly imbalanced datasets. The proposed method is compared with 10 methods on 43 highly imbalanced datasets and evaluated on AUC and G_Mean metrics. The experimental results show that SS_DEBOHID obtains more than 30 best performing datasets on KNN, SVM, and DT classifiers in terms of AUC and G_mean, respectively. The proposed method outperforms other methods by 8.07% to 24.34% on average AUC metric and by at least 6.96% and up to 45.37% on average G_mean metric. In addition, we validate the efficiency of SS_DEBOHID on 8 high-dimensional and large sample size datasets. The experimental results show that SS_DEBOHID has better classification performance and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GXWFDC完成签到 ,获得积分10
5秒前
追寻梦之完成签到 ,获得积分10
7秒前
石子完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
Yun完成签到 ,获得积分10
11秒前
13秒前
leo0531完成签到 ,获得积分10
13秒前
14秒前
海盗船长发布了新的文献求助10
14秒前
18秒前
海盗船长发布了新的文献求助10
18秒前
yongp发布了新的文献求助10
19秒前
努力加油煤老八完成签到 ,获得积分0
20秒前
21秒前
21秒前
黄景滨完成签到 ,获得积分10
23秒前
24秒前
旋光活性完成签到 ,获得积分10
24秒前
叮咚发布了新的文献求助10
26秒前
大气的寇完成签到,获得积分10
27秒前
盐焗鱼丸完成签到 ,获得积分10
27秒前
浮游应助科研通管家采纳,获得10
30秒前
李健应助科研通管家采纳,获得10
30秒前
ahh完成签到 ,获得积分10
30秒前
共享精神应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
30秒前
Orange应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
个性的荆应助科研通管家采纳,获得10
31秒前
小马甲应助科研通管家采纳,获得10
31秒前
CipherSage应助科研通管家采纳,获得10
31秒前
个性的荆应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
31秒前
38秒前
量子星尘发布了新的文献求助10
39秒前
隐形曼青应助ganhykk采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652825
求助须知:如何正确求助?哪些是违规求助? 4788443
关于积分的说明 15061739
捐赠科研通 4811262
什么是DOI,文献DOI怎么找? 2573820
邀请新用户注册赠送积分活动 1529599
关于科研通互助平台的介绍 1488335