已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A new oversampling approach based differential evolution on the safe set for highly imbalanced datasets

过采样 计算机科学 模式识别(心理学) 人工智能 稳健性(进化) 公制(单位) 支持向量机 集合(抽象数据类型) 数据挖掘 机器学习 生物化学 带宽(计算) 经济 基因 化学 运营管理 计算机网络 程序设计语言
作者
Jiaoni Zhang,Yanying Li,Baoshuang Zhang,Xialin Wang,Huanhuan Gong
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:234: 121039-121039 被引量:3
标识
DOI:10.1016/j.eswa.2023.121039
摘要

Oversampling method is used to solve the class imbalanced issues. Some existing oversampling methods do not well remove noisy samples and avoid synthesizing noisy samples. Therefore, we propose a new oversampling approach based differential evolution on the safe set for highly imbalanced datasets (SS_DEBOHID). SS_DEBOHID firstly uses k-nearest neighbors (kNN) method to learn the safe area of minority; then the DEBOHID oversampling method is used to synthesize new minority samples in the safe area. The advantages of SS_DEBOHID include that (a) it generates samples in the safe area to reduce generation of noisy samples and reduce synthetic samples falling into the classification boundary and majority area; (b) it uses the DEBOHID method to synthesize samples and increase the diversity of samples; (c) the method is suitable for highly imbalanced datasets. The proposed method is compared with 10 methods on 43 highly imbalanced datasets and evaluated on AUC and G_Mean metrics. The experimental results show that SS_DEBOHID obtains more than 30 best performing datasets on KNN, SVM, and DT classifiers in terms of AUC and G_mean, respectively. The proposed method outperforms other methods by 8.07% to 24.34% on average AUC metric and by at least 6.96% and up to 45.37% on average G_mean metric. In addition, we validate the efficiency of SS_DEBOHID on 8 high-dimensional and large sample size datasets. The experimental results show that SS_DEBOHID has better classification performance and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早早发布了新的文献求助10
1秒前
2秒前
2秒前
VDC应助Yeyeye采纳,获得30
4秒前
彭于晏应助朱冰蓝采纳,获得10
4秒前
4秒前
酷波er应助ahaa采纳,获得10
6秒前
za发布了新的文献求助10
7秒前
XMC2022发布了新的文献求助10
7秒前
10秒前
充电宝应助罗大壮采纳,获得10
10秒前
WWW完成签到 ,获得积分10
10秒前
多喝温水完成签到 ,获得积分10
10秒前
11秒前
wise111发布了新的文献求助10
11秒前
12秒前
李爱国应助za采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得30
13秒前
浮游应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
正直乘云发布了新的文献求助10
14秒前
XMC2022完成签到,获得积分10
15秒前
15秒前
aloha01发布了新的文献求助10
15秒前
suy发布了新的文献求助10
16秒前
17秒前
19秒前
二二春完成签到,获得积分10
19秒前
万默完成签到 ,获得积分10
19秒前
Dr.Wei完成签到,获得积分10
21秒前
罗大壮发布了新的文献求助10
22秒前
蓝白完成签到,获得积分10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125917
求助须知:如何正确求助?哪些是违规求助? 4329582
关于积分的说明 13491436
捐赠科研通 4164515
什么是DOI,文献DOI怎么找? 2282992
邀请新用户注册赠送积分活动 1284044
关于科研通互助平台的介绍 1223448