A new oversampling approach based differential evolution on the safe set for highly imbalanced datasets

过采样 计算机科学 模式识别(心理学) 人工智能 稳健性(进化) 公制(单位) 支持向量机 集合(抽象数据类型) 数据挖掘 机器学习 生物化学 带宽(计算) 经济 基因 化学 运营管理 计算机网络 程序设计语言
作者
Jiaoni Zhang,Yanying Li,Baoshuang Zhang,Xialin Wang,Huanhuan Gong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:234: 121039-121039 被引量:3
标识
DOI:10.1016/j.eswa.2023.121039
摘要

Oversampling method is used to solve the class imbalanced issues. Some existing oversampling methods do not well remove noisy samples and avoid synthesizing noisy samples. Therefore, we propose a new oversampling approach based differential evolution on the safe set for highly imbalanced datasets (SS_DEBOHID). SS_DEBOHID firstly uses k-nearest neighbors (kNN) method to learn the safe area of minority; then the DEBOHID oversampling method is used to synthesize new minority samples in the safe area. The advantages of SS_DEBOHID include that (a) it generates samples in the safe area to reduce generation of noisy samples and reduce synthetic samples falling into the classification boundary and majority area; (b) it uses the DEBOHID method to synthesize samples and increase the diversity of samples; (c) the method is suitable for highly imbalanced datasets. The proposed method is compared with 10 methods on 43 highly imbalanced datasets and evaluated on AUC and G_Mean metrics. The experimental results show that SS_DEBOHID obtains more than 30 best performing datasets on KNN, SVM, and DT classifiers in terms of AUC and G_mean, respectively. The proposed method outperforms other methods by 8.07% to 24.34% on average AUC metric and by at least 6.96% and up to 45.37% on average G_mean metric. In addition, we validate the efficiency of SS_DEBOHID on 8 high-dimensional and large sample size datasets. The experimental results show that SS_DEBOHID has better classification performance and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助米诺团子采纳,获得10
2秒前
摸鱼王完成签到,获得积分10
4秒前
4秒前
牛牛完成签到,获得积分10
5秒前
6秒前
直率飞柏完成签到,获得积分20
6秒前
hd发布了新的文献求助10
6秒前
7秒前
7秒前
ding应助淡定的思松采纳,获得10
8秒前
AlexMoser发布了新的文献求助10
9秒前
s1m0n_123发布了新的文献求助10
10秒前
硝基发布了新的文献求助10
10秒前
安氏月月发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
笨笨含羞草完成签到,获得积分10
13秒前
17秒前
21秒前
cpp完成签到,获得积分20
22秒前
jia雪完成签到,获得积分10
23秒前
23秒前
渠安发布了新的文献求助300
24秒前
25秒前
25秒前
领导范儿应助万万没想到采纳,获得10
28秒前
28秒前
NGU发布了新的文献求助10
28秒前
震动的宛菡完成签到 ,获得积分10
30秒前
北风歌完成签到,获得积分10
31秒前
32秒前
maggiexjl完成签到,获得积分10
32秒前
32秒前
娃娃菜妮发布了新的文献求助10
32秒前
凯凯发布了新的文献求助10
33秒前
33秒前
852应助宥沐采纳,获得10
33秒前
33秒前
Tracey16完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474