The Impact of Amplification on Efficiency and Energy Density of Induced Strain Actuators

执行机构 刚度 材料科学 放大系数 流离失所(心理学) 机制(生物学) 能量(信号处理) 杠杆 结构工程 复合材料 机械工程 工程类 电气工程 物理 光电子学 心理学 放大器 CMOS芯片 量子力学 心理治疗师
作者
Jeffrey S. N. Paine,Zaffir Chaudhry
出处
期刊:Aerospace [MDPI AG]
被引量:5
标识
DOI:10.1115/imece1996-0663
摘要

Abstract To some degree, stroke amplification of solid-state electroceramic driven actuators is necessary in all engineering applications. Accompanying stroke amplification, however, are the penalties of loss of output displacement and loss of energy delivered to the load per unit actuator weight. The penalties can be significant when the actuator is used to drive an external stiffness-type load. Using a model which describes a very commonly used lever-type amplification mechanism, the impact of the stiffness and the attendant weight of various members in the amplification mechanism on energy transfer and energy density of the actuator material (under static conditions) is discussed. The significant finding of the study is that on average, after amplification, the energy density of the actuator is about 20 to 35% of the inherent energy density of the active material alone. In other words, only 20 to 35% percent of the energy density that can be delivered by the electroceramic alone when directly driving an external spring load, is available when the active material is used in a displacement amplified actuator device such as the type depicted in the study. The study also demonstrates that the highest stiffness of the amplification members is not desirable, as it significantly increases weight and thereby reduces the energy density. An active material stiffness to amplification structure stiffness ratio of 0.2 to 0.3 provides the highest overall energy density. The impact of using a variety of materials in the amplification mechanisms, is presented. In addition, the advantage of using high stiffness-to-weight composites and other novel materials is also presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
宸1发布了新的文献求助10
1秒前
wy发布了新的文献求助10
4秒前
星亚唐发布了新的文献求助10
5秒前
bkagyin应助托马斯亮绿采纳,获得10
6秒前
7秒前
大葡萄发布了新的文献求助20
9秒前
苻谷丝发布了新的文献求助10
10秒前
11秒前
12秒前
奶昔源发布了新的文献求助10
12秒前
田様应助研友_V8Qmr8采纳,获得10
14秒前
星辰大海应助钰凛采纳,获得10
15秒前
sush1hang完成签到,获得积分10
15秒前
18秒前
20秒前
天天快乐应助苻谷丝采纳,获得10
23秒前
23秒前
24秒前
奶昔源完成签到,获得积分20
25秒前
2028847955发布了新的文献求助10
25秒前
25秒前
充电宝应助hxy采纳,获得10
25秒前
wanci应助吻我采纳,获得10
26秒前
烂漫小蝴蝶完成签到,获得积分10
26秒前
27秒前
28秒前
28秒前
29秒前
30秒前
陈sir发布了新的文献求助10
30秒前
wy完成签到,获得积分20
31秒前
32秒前
星亚唐完成签到,获得积分10
33秒前
笑傲江湖发布了新的文献求助10
33秒前
罗诗薇完成签到 ,获得积分10
33秒前
33秒前
犹豫酸奶发布了新的文献求助10
34秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125620
求助须知:如何正确求助?哪些是违规求助? 2775921
关于积分的说明 7728309
捐赠科研通 2431379
什么是DOI,文献DOI怎么找? 1291979
科研通“疑难数据库(出版商)”最低求助积分说明 622295
版权声明 600376