吸附
镉
水溶液中的金属离子
锌
水溶液
核化学
傅里叶变换红外光谱
废水
复合数
金属
扫描电子显微镜
化学
材料科学
化学工程
冶金
复合材料
废物管理
有机化学
工程类
作者
Njood R. Azeez,Suhaib S. Salih,Mohammed Kadhom,Harith N. Mohammed,Tushar K. Ghosh
标识
DOI:10.1016/j.gce.2023.08.003
摘要
Zinc and cadmium pollutants cause a significant environmental effect that cannot be ignored. Due to their considerable amount in an aqueous environment, industries are seeking suitable adsorbents that are environmentally friendly and inexpensive for removing metals from wastewater before disposing of them in surface waters. This research employed original MXene (MX) and chitosan-modified MXene (CSMX) to extract zinc (Zn(II)) and cadmium (Cd(II)) metal ions from water-based solutions. The composite material produced was analyzed using techniques such as X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET). The effects of contact duration, pH of the solution, and initial concentration of metal ions on the adsorption process of zinc and cadmium onto both MX and CSMX composites were investigated. MXene and prepared CSMX composite presented a high adsorption capacity for both studied heavy metals, which were 91.55 and 73.82 mg/g for Zn(II) and Cd(II) onto MX, 106.84 and 93.07 mg/g for Cd(II) and Zn(II) onto CSMX composite, respectively. Furthermore, the maximum competitive adsorption capacities for Zn(II) onto MX and CSMX composites are 77.29 and 93.47 mg/g, and for Cd(II) 60.30 and 79.66 mg/g, respectively. Hence, the removal capacities for both single and competitive metal ions were superior to CSMX composite. However, the adsorption capacities after five successive regeneration sequences were only dropped by 13.2% for Zn(II) and 17.4% for Cd(II) onto the CSMX composite compared to the first cycle. These results confirm that both metals could be efficiently terminated from wastewater, which makes the prepared CSMX composite a favorable candidate adsorbent in practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI