Q-Learning based system for Path Planning with Unmanned Aerial Vehicles swarms in obstacle environments

计算机科学 障碍物 运动规划 任务(项目管理) 避障 强化学习 群体行为 人工智能 路径(计算) 实时计算 领域(数学) 弹道 控制(管理) 机器人 移动机器人 工程类 系统工程 天文 纯数学 法学 程序设计语言 物理 政治学 数学
作者
Alejandro Puente-Castro,Daniel Rivero,Eurico Pedrosa,Artur Camposo Pereira,Nuno Lau,Enrique Fernandez-Blanco
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:235: 121240-121240 被引量:2
标识
DOI:10.1016/j.eswa.2023.121240
摘要

Path Planning methods for the autonomous control of Unmanned Aerial Vehicle (UAV) swarms are on the rise due to the numerous advantages they bring. There are increasingly more scenarios where autonomous control of multiple UAVs is required. Most of these scenarios involve a large number of obstacles, such as power lines or trees. Despite these challenges, there are also several advantages; if all UAVs can operate autonomously, personnel expenses can be reduced. Additionally, if their flight paths are optimized, energy consumption is reduced, leaving more battery time for other operations. In this paper, a Reinforcement Learning-based system is proposed to solve this problem in environments with obstacles by utilizing Q-Learning. This method allows a model, in this case, an Artificial Neural Network, to self-adjust by learning from its mistakes and successes. Regardless of the map's size or the number of UAVs in the swarm, the goal of these paths is to ensure complete coverage of an area with fixed obstacles for tasks like field prospecting. Setting goals or having any prior information apart from the provided map is not required. During the experimentation phase, five maps of varying sizes were used, each with different obstacles and a varying number of UAVs. To evaluate the quality of the results, the number of actions taken by each UAV to complete the task in each experiment was considered. The results indicate that the system achieves solutions with fewer movements as the number of UAVs increases. An increasing number of UAVs on a map lead to solutions in fewer moves. The results have been compared, and a statistical significance analysis has been conducted on the proposed model's outcomes, demonstrating its capabilities. Thus, it is shown that a two-layer Artificial Neural Network used to implement a Q-Learning algorithm is sufficient to operate on maps with obstacles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限秋天完成签到 ,获得积分10
1秒前
nulll完成签到,获得积分10
2秒前
蟒玉朝天完成签到 ,获得积分10
3秒前
乘数完成签到,获得积分10
4秒前
4秒前
乐观的饭饭完成签到 ,获得积分10
5秒前
5秒前
赘婿应助安巧蕊采纳,获得10
7秒前
轻松凡英完成签到,获得积分10
9秒前
wu发布了新的文献求助10
10秒前
执着乐双完成签到,获得积分10
11秒前
不爱吃饭的小鱼完成签到 ,获得积分10
12秒前
223344完成签到 ,获得积分10
13秒前
慕青应助ccc采纳,获得10
13秒前
上官若男应助光亮秋白采纳,获得10
14秒前
lenny完成签到,获得积分10
14秒前
yyt完成签到 ,获得积分10
14秒前
Hello应助十七采纳,获得10
17秒前
五六七完成签到,获得积分10
17秒前
木之夏发布了新的文献求助10
20秒前
小白完成签到,获得积分10
21秒前
文艺唇彩完成签到,获得积分20
23秒前
秋冬完成签到 ,获得积分10
26秒前
YL完成签到,获得积分10
28秒前
28秒前
28秒前
光亮秋白完成签到,获得积分10
34秒前
34秒前
善良的翼完成签到 ,获得积分10
34秒前
夏侯德东完成签到,获得积分10
35秒前
Raymond应助妮妮采纳,获得10
36秒前
JamesPei应助小乌龟采纳,获得30
36秒前
李健的小迷弟应助Eric采纳,获得10
38秒前
付小佳发布了新的文献求助10
38秒前
啊啊啊完成签到 ,获得积分10
39秒前
40秒前
41秒前
42秒前
PEI发布了新的文献求助10
44秒前
活力的以晴完成签到,获得积分10
45秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151906
求助须知:如何正确求助?哪些是违规求助? 2803220
关于积分的说明 7852502
捐赠科研通 2460587
什么是DOI,文献DOI怎么找? 1309912
科研通“疑难数据库(出版商)”最低求助积分说明 629066
版权声明 601760