Q-Learning based system for Path Planning with Unmanned Aerial Vehicles swarms in obstacle environments

计算机科学 障碍物 运动规划 任务(项目管理) 避障 强化学习 群体行为 人工智能 路径(计算) 实时计算 领域(数学) 弹道 控制(管理) 机器人 移动机器人 工程类 系统工程 天文 纯数学 法学 程序设计语言 物理 政治学 数学
作者
Alejandro Puente-Castro,Daniel Rivero,Eurico Pedrosa,Artur Pereira,Nuno Lau,Enrique Fernández-Blanco
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:235: 121240-121240 被引量:19
标识
DOI:10.1016/j.eswa.2023.121240
摘要

Path Planning methods for the autonomous control of Unmanned Aerial Vehicle (UAV) swarms are on the rise due to the numerous advantages they bring. There are increasingly more scenarios where autonomous control of multiple UAVs is required. Most of these scenarios involve a large number of obstacles, such as power lines or trees. Despite these challenges, there are also several advantages; if all UAVs can operate autonomously, personnel expenses can be reduced. Additionally, if their flight paths are optimized, energy consumption is reduced, leaving more battery time for other operations. In this paper, a Reinforcement Learning-based system is proposed to solve this problem in environments with obstacles by utilizing Q-Learning. This method allows a model, in this case, an Artificial Neural Network, to self-adjust by learning from its mistakes and successes. Regardless of the map's size or the number of UAVs in the swarm, the goal of these paths is to ensure complete coverage of an area with fixed obstacles for tasks like field prospecting. Setting goals or having any prior information apart from the provided map is not required. During the experimentation phase, five maps of varying sizes were used, each with different obstacles and a varying number of UAVs. To evaluate the quality of the results, the number of actions taken by each UAV to complete the task in each experiment was considered. The results indicate that the system achieves solutions with fewer movements as the number of UAVs increases. An increasing number of UAVs on a map lead to solutions in fewer moves. The results have been compared, and a statistical significance analysis has been conducted on the proposed model's outcomes, demonstrating its capabilities. Thus, it is shown that a two-layer Artificial Neural Network used to implement a Q-Learning algorithm is sufficient to operate on maps with obstacles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助不安的秋白采纳,获得10
刚刚
iii发布了新的文献求助10
刚刚
123发布了新的文献求助10
刚刚
称心寒松发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
yehaidadao完成签到,获得积分10
1秒前
欢呼妙菱发布了新的文献求助10
3秒前
3秒前
MizzZeus完成签到,获得积分10
3秒前
3秒前
善学以致用应助up采纳,获得10
3秒前
4秒前
ll发布了新的文献求助10
4秒前
星辰大海应助蚕宝宝小子采纳,获得10
5秒前
雪白的面包完成签到 ,获得积分10
6秒前
类囊体薄膜完成签到,获得积分10
6秒前
absb完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
大个应助Forez采纳,获得10
7秒前
王小元发布了新的文献求助10
7秒前
pincoudegushi发布了新的文献求助10
7秒前
8秒前
yx_cheng应助自觉妖妖采纳,获得30
10秒前
光亮青柏完成签到 ,获得积分10
10秒前
10秒前
namk完成签到,获得积分10
11秒前
Momo发布了新的文献求助10
11秒前
昏睡的蟠桃应助巫凝天采纳,获得300
11秒前
星辰大海应助T拐拐采纳,获得10
12秒前
12秒前
Bio应助美好斓采纳,获得30
13秒前
13秒前
13秒前
ll完成签到,获得积分10
14秒前
科研长颈鹿完成签到,获得积分10
14秒前
峥2发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650