Q-Learning based system for Path Planning with Unmanned Aerial Vehicles swarms in obstacle environments

计算机科学 障碍物 运动规划 任务(项目管理) 避障 强化学习 群体行为 人工智能 路径(计算) 实时计算 领域(数学) 弹道 控制(管理) 机器人 移动机器人 工程类 系统工程 程序设计语言 物理 数学 天文 纯数学 政治学 法学
作者
Alejandro Puente-Castro,Daniel Rivero,Eurico Pedrosa,Artur Pereira,Nuno Lau,Enrique Fernández-Blanco
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:235: 121240-121240 被引量:19
标识
DOI:10.1016/j.eswa.2023.121240
摘要

Path Planning methods for the autonomous control of Unmanned Aerial Vehicle (UAV) swarms are on the rise due to the numerous advantages they bring. There are increasingly more scenarios where autonomous control of multiple UAVs is required. Most of these scenarios involve a large number of obstacles, such as power lines or trees. Despite these challenges, there are also several advantages; if all UAVs can operate autonomously, personnel expenses can be reduced. Additionally, if their flight paths are optimized, energy consumption is reduced, leaving more battery time for other operations. In this paper, a Reinforcement Learning-based system is proposed to solve this problem in environments with obstacles by utilizing Q-Learning. This method allows a model, in this case, an Artificial Neural Network, to self-adjust by learning from its mistakes and successes. Regardless of the map's size or the number of UAVs in the swarm, the goal of these paths is to ensure complete coverage of an area with fixed obstacles for tasks like field prospecting. Setting goals or having any prior information apart from the provided map is not required. During the experimentation phase, five maps of varying sizes were used, each with different obstacles and a varying number of UAVs. To evaluate the quality of the results, the number of actions taken by each UAV to complete the task in each experiment was considered. The results indicate that the system achieves solutions with fewer movements as the number of UAVs increases. An increasing number of UAVs on a map lead to solutions in fewer moves. The results have been compared, and a statistical significance analysis has been conducted on the proposed model's outcomes, demonstrating its capabilities. Thus, it is shown that a two-layer Artificial Neural Network used to implement a Q-Learning algorithm is sufficient to operate on maps with obstacles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助Xxx采纳,获得10
刚刚
雷霆康康完成签到,获得积分10
刚刚
阿龙发布了新的文献求助10
刚刚
1秒前
红皮燕子发布了新的文献求助10
1秒前
思源应助paperman采纳,获得10
2秒前
王正龙发布了新的文献求助10
3秒前
ywang发布了新的文献求助10
3秒前
所所应助归尘采纳,获得10
4秒前
pk完成签到,获得积分10
4秒前
高挑的鹰完成签到,获得积分20
4秒前
sun1111发布了新的文献求助10
7秒前
杨杨发布了新的文献求助10
7秒前
7秒前
英吉利25发布了新的文献求助10
7秒前
SQQ完成签到,获得积分20
7秒前
浮游应助可靠板栗采纳,获得10
7秒前
8秒前
哭泣的缘郡完成签到,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
斯文败类应助金汐采纳,获得10
10秒前
星辰大海应助HmyGDUT采纳,获得10
11秒前
JamesPei应助满天星采纳,获得10
11秒前
爆米花应助陈先生采纳,获得10
11秒前
红皮燕子完成签到,获得积分10
12秒前
阿修罗完成签到,获得积分10
12秒前
12秒前
归尘发布了新的文献求助10
13秒前
WX完成签到,获得积分10
14秒前
14秒前
15秒前
小黑之家发布了新的文献求助10
15秒前
15秒前
完美世界应助哈哈哈采纳,获得10
15秒前
一团软绵绵应助王邦宁采纳,获得10
15秒前
15秒前
番薯圆完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942107
求助须知:如何正确求助?哪些是违规求助? 4207873
关于积分的说明 13079673
捐赠科研通 3986881
什么是DOI,文献DOI怎么找? 2182779
邀请新用户注册赠送积分活动 1198476
关于科研通互助平台的介绍 1110773