Molecular mechanism and in vitro digestion of β-galactosidase binding to three small molecules in milk tea

化学 分子 范德瓦尔斯力 小分子 氢键 对接(动物) 叶黄素 分子动力学 立体化学 生物物理学 生物化学 计算化学 有机化学 类胡萝卜素 医学 护理部 生物
作者
Haonan Lu,Zhixi Li,Xin Chen,Yongshan Zhou,Hui Wang,La Li,Yongfeng Liu,Changchun Hao
出处
期刊:Journal of Molecular Structure [Elsevier]
卷期号:1294: 136467-136467
标识
DOI:10.1016/j.molstruc.2023.136467
摘要

In this study, folic acid (FA) inhibited β-galactosidase (β-Gal) activity, whereas EGCG and lutein activated β-galactosidase hydrolytic activity and the binding of small molecules made β-Gal more resistant to pepsin-induced protein hydrolysis. Various spectroscopic experiments indicated that FA, EGCG, and lutein can change their ratios of α-helix, β-folding, and irregular coiling, which could affect the microenvironment around the tryptophan, and vibrate chemical bonds. Thermodynamic calculations suggested that these three small molecules interact with proteins mainly through van der Waals forces and hydrogen bonding, which is consistent with the results of molecular docking simulation experiments. The possible binding sites for β-galactosidase and the three small molecules were investigated. β-galactosidase showed the strongest binding capacity for lutein, while EGCG showed a relatively weak binding capacity. The results of density-functional theory (DFT) analysis also confirmed these findings and described that small molecules are more elastic when bound to β-galactosidase than free small molecules, which also demonstrated their stronger interaction ability. Molecular dynamics (MD) experiments also confirmed the structural flexibility of the small molecules when β-Gal was bound to the three small molecules mentioned above, in the order of β-Gal- EGCG, β-Gal-FA, and β-Gal-lutein. The present study provides new insights into the interactions of the three small molecules with β-Gal, which may facilitate the application of functional β-Gal in the food industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海棠yiyi完成签到,获得积分10
刚刚
刚刚
梁小鑫发布了新的文献求助10
刚刚
Jenny应助圈圈采纳,获得10
1秒前
内向青文完成签到,获得积分10
1秒前
lefora完成签到,获得积分10
1秒前
丰知然应助CO2采纳,获得10
2秒前
Zhihu完成签到,获得积分10
2秒前
feng完成签到,获得积分10
3秒前
3秒前
美丽稀完成签到,获得积分10
4秒前
PXY应助屁王采纳,获得10
4秒前
sunburst完成签到,获得积分10
4秒前
狼主完成签到 ,获得积分10
4秒前
吕亦寒完成签到,获得积分10
4秒前
junzilan发布了新的文献求助10
5秒前
ZL发布了新的文献求助10
5秒前
5秒前
亻鱼完成签到,获得积分10
5秒前
超级蘑菇完成签到 ,获得积分10
6秒前
6秒前
6秒前
congguitar完成签到,获得积分10
6秒前
7秒前
limof完成签到,获得积分20
7秒前
跳跃聪健发布了新的文献求助10
7秒前
168521kf完成签到,获得积分10
7秒前
8秒前
Avatar完成签到,获得积分10
8秒前
8秒前
小田完成签到,获得积分10
9秒前
JJJ应助大气沅采纳,获得10
9秒前
10秒前
kydd驳回了桐桐应助
10秒前
11秒前
11秒前
11秒前
英俊的铭应助洛尚采纳,获得10
11秒前
12秒前
在水一方应助Harlotte采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740