Multiparametric MRI-based radiomics nomogram for predicting malignant transformation of sinonasal inverted papilloma

列线图 医学 无线电技术 置信区间 放射科 磁共振成像 逻辑回归 核医学 内科学
作者
Z. Xia,Naier Lin,W. Chen,Meng Qi,Yan Sha
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (3): e408-e416
标识
DOI:10.1016/j.crad.2023.11.004
摘要

AIM

To investigate the feasibility of a radiomics nomogram model for predicting malignant transformation in sinonasal inverted papilloma (IP) based on radiomic signature and clinical risk factors.

MATERIALS AND METHODS

This single institutional retrospective review included a total of 143 patients with IP and 75 patients with IP with malignant transformation to squamous cell carcinoma (IP-SCC). All patients underwent surgical pathology and had preoperative magnetic resonance imaging (MRI) and computed tomography (CT) sinus studies between June 2014 and February 2022. Radiomics features were extracted from contrast-enhanced T1-weighted images (CE-T1WI), T2-weighted images (T2WI), and apparent diffusion coefficient (ADC) maps. The least absolute shrinkage and selection operator (LASSO) were performed to select the features extracted from the sequences mentioned above. Independent clinical risk factors were identified by multivariate logistic regression analysis. Radiomics nomogram was constructed by incorporating independent clinical risk factors and radiomics signature. Based on discrimination and calibration, the diagnostic performance of the nomogram was evaluated.

RESULTS

Twelve radiomics features were selected to develop the radiomics model with an area under the curve (AUC) of 0.987 and 0.989, respectively. Epistaxis (p=0.011), T2 equal signal (p=0.003), extranasal invasion (p<0.001), and loss of convoluted cerebriform pattern (p=0.002) were identified as independent clinical predictors. The radiomics nomogram model showed excellent calibration and discrimination (AUC: 0.993, 95% confidence interval [CI]: 0.985–1.00 and 0.990, 95% CI: 0.974–1.00) in the training and validation sets, respectively.

CONCLUSION

The nomogram that the combined radiomics signature and clinical risk factors showed a satisfactory ability to predict IP-SCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daxiangqaq发布了新的文献求助10
刚刚
KING发布了新的文献求助10
1秒前
xmyang完成签到,获得积分10
2秒前
李健应助害羞的广山采纳,获得10
2秒前
烟花应助熊阿阿采纳,获得10
3秒前
希望天下0贩的0应助YUQILV采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
单薄咖啡豆完成签到 ,获得积分10
6秒前
7秒前
8秒前
8秒前
10秒前
10秒前
10秒前
星睿完成签到,获得积分10
10秒前
11秒前
avalanche应助Lfy采纳,获得50
11秒前
勤奋路由器完成签到,获得积分10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
KING完成签到,获得积分20
12秒前
852应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得30
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得100
12秒前
wx完成签到 ,获得积分10
12秒前
12秒前
打打应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424649
求助须知:如何正确求助?哪些是违规求助? 4539035
关于积分的说明 14164752
捐赠科研通 4456058
什么是DOI,文献DOI怎么找? 2444033
邀请新用户注册赠送积分活动 1435127
关于科研通互助平台的介绍 1412469