重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Multiparametric MRI-based radiomics nomogram for predicting malignant transformation of sinonasal inverted papilloma

列线图 医学 无线电技术 置信区间 放射科 磁共振成像 逻辑回归 核医学 内科学
作者
Z. Xia,Naier Lin,W. Chen,Meng Qi,Yan Sha
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (3): e408-e416
标识
DOI:10.1016/j.crad.2023.11.004
摘要

AIM

To investigate the feasibility of a radiomics nomogram model for predicting malignant transformation in sinonasal inverted papilloma (IP) based on radiomic signature and clinical risk factors.

MATERIALS AND METHODS

This single institutional retrospective review included a total of 143 patients with IP and 75 patients with IP with malignant transformation to squamous cell carcinoma (IP-SCC). All patients underwent surgical pathology and had preoperative magnetic resonance imaging (MRI) and computed tomography (CT) sinus studies between June 2014 and February 2022. Radiomics features were extracted from contrast-enhanced T1-weighted images (CE-T1WI), T2-weighted images (T2WI), and apparent diffusion coefficient (ADC) maps. The least absolute shrinkage and selection operator (LASSO) were performed to select the features extracted from the sequences mentioned above. Independent clinical risk factors were identified by multivariate logistic regression analysis. Radiomics nomogram was constructed by incorporating independent clinical risk factors and radiomics signature. Based on discrimination and calibration, the diagnostic performance of the nomogram was evaluated.

RESULTS

Twelve radiomics features were selected to develop the radiomics model with an area under the curve (AUC) of 0.987 and 0.989, respectively. Epistaxis (p=0.011), T2 equal signal (p=0.003), extranasal invasion (p<0.001), and loss of convoluted cerebriform pattern (p=0.002) were identified as independent clinical predictors. The radiomics nomogram model showed excellent calibration and discrimination (AUC: 0.993, 95% confidence interval [CI]: 0.985–1.00 and 0.990, 95% CI: 0.974–1.00) in the training and validation sets, respectively.

CONCLUSION

The nomogram that the combined radiomics signature and clinical risk factors showed a satisfactory ability to predict IP-SCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
淡淡尔烟完成签到,获得积分20
刚刚
研友_VZG7GZ应助Rain采纳,获得10
刚刚
1秒前
长生完成签到 ,获得积分10
2秒前
和谐半仙完成签到,获得积分20
2秒前
sxl发布了新的文献求助10
2秒前
乐观半凡完成签到,获得积分10
2秒前
Ying发布了新的文献求助10
2秒前
3秒前
3秒前
雪山飞龙发布了新的文献求助10
3秒前
大胆诗云发布了新的文献求助20
3秒前
高贵的迎蕾完成签到 ,获得积分10
3秒前
乐乐应助陈某人采纳,获得10
3秒前
3秒前
Ava应助Shirky采纳,获得10
4秒前
Liella完成签到,获得积分10
4秒前
4秒前
脑壳疼发布了新的文献求助10
4秒前
xhsz1111发布了新的文献求助10
5秒前
5秒前
夜见的黄昏下完成签到,获得积分10
6秒前
小鹿5460发布了新的文献求助10
6秒前
xin发布了新的文献求助10
6秒前
缓慢盼兰完成签到,获得积分10
6秒前
璐璇发布了新的文献求助10
6秒前
杨某人发布了新的文献求助10
7秒前
Rain完成签到,获得积分10
7秒前
和谐如容发布了新的文献求助10
8秒前
阿巴完成签到,获得积分10
8秒前
李胜完成签到,获得积分20
8秒前
9秒前
古城小街完成签到,获得积分10
9秒前
9秒前
天天快乐应助meta采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
温婉的凝丹完成签到 ,获得积分10
11秒前
天天快乐应助yuzu采纳,获得20
11秒前
小二郎应助evyhui采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567