Multiparametric MRI-based radiomics nomogram for predicting malignant transformation of sinonasal inverted papilloma

列线图 医学 无线电技术 置信区间 放射科 磁共振成像 逻辑回归 核医学 内科学
作者
Z. Xia,Naier Lin,W. Chen,Meng Qi,Yan Sha
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (3): e408-e416
标识
DOI:10.1016/j.crad.2023.11.004
摘要

AIM

To investigate the feasibility of a radiomics nomogram model for predicting malignant transformation in sinonasal inverted papilloma (IP) based on radiomic signature and clinical risk factors.

MATERIALS AND METHODS

This single institutional retrospective review included a total of 143 patients with IP and 75 patients with IP with malignant transformation to squamous cell carcinoma (IP-SCC). All patients underwent surgical pathology and had preoperative magnetic resonance imaging (MRI) and computed tomography (CT) sinus studies between June 2014 and February 2022. Radiomics features were extracted from contrast-enhanced T1-weighted images (CE-T1WI), T2-weighted images (T2WI), and apparent diffusion coefficient (ADC) maps. The least absolute shrinkage and selection operator (LASSO) were performed to select the features extracted from the sequences mentioned above. Independent clinical risk factors were identified by multivariate logistic regression analysis. Radiomics nomogram was constructed by incorporating independent clinical risk factors and radiomics signature. Based on discrimination and calibration, the diagnostic performance of the nomogram was evaluated.

RESULTS

Twelve radiomics features were selected to develop the radiomics model with an area under the curve (AUC) of 0.987 and 0.989, respectively. Epistaxis (p=0.011), T2 equal signal (p=0.003), extranasal invasion (p<0.001), and loss of convoluted cerebriform pattern (p=0.002) were identified as independent clinical predictors. The radiomics nomogram model showed excellent calibration and discrimination (AUC: 0.993, 95% confidence interval [CI]: 0.985–1.00 and 0.990, 95% CI: 0.974–1.00) in the training and validation sets, respectively.

CONCLUSION

The nomogram that the combined radiomics signature and clinical risk factors showed a satisfactory ability to predict IP-SCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mds发布了新的文献求助10
2秒前
CMD完成签到 ,获得积分10
2秒前
正版DY发布了新的文献求助10
2秒前
2秒前
Dank1ng完成签到,获得积分10
3秒前
小二郎应助安若采纳,获得10
3秒前
3秒前
彭于晏应助清明采纳,获得10
4秒前
YLL完成签到,获得积分10
4秒前
木梨子完成签到,获得积分10
5秒前
橙子发布了新的文献求助10
5秒前
5秒前
文艺的雨完成签到,获得积分10
6秒前
7秒前
huahua完成签到,获得积分10
7秒前
英俊的铭应助dry采纳,获得10
8秒前
小橘完成签到,获得积分10
9秒前
9秒前
琥1完成签到,获得积分10
9秒前
maguodrgon发布了新的文献求助10
10秒前
虚幻的亦旋完成签到,获得积分10
10秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
Babytucky发布了新的文献求助10
13秒前
柴鱼完成签到,获得积分10
15秒前
零琳完成签到 ,获得积分20
16秒前
雪王完成签到,获得积分10
16秒前
17秒前
17秒前
NexusExplorer应助炫彩小陈采纳,获得10
17秒前
20秒前
顾矜应助mds采纳,获得10
22秒前
23秒前
kaier完成签到 ,获得积分0
24秒前
24秒前
25秒前
26秒前
zhuwei完成签到,获得积分10
27秒前
希音发布了新的文献求助10
27秒前
huahua发布了新的文献求助10
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142180
求助须知:如何正确求助?哪些是违规求助? 4340425
关于积分的说明 13517521
捐赠科研通 4180348
什么是DOI,文献DOI怎么找? 2292405
邀请新用户注册赠送积分活动 1293003
关于科研通互助平台的介绍 1235514