Multiparametric MRI-based radiomics nomogram for predicting malignant transformation of sinonasal inverted papilloma

列线图 医学 无线电技术 置信区间 放射科 磁共振成像 逻辑回归 核医学 内科学
作者
Z. Xia,Naier Lin,W. Chen,Meng Qi,Yan Sha
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (3): e408-e416
标识
DOI:10.1016/j.crad.2023.11.004
摘要

AIM

To investigate the feasibility of a radiomics nomogram model for predicting malignant transformation in sinonasal inverted papilloma (IP) based on radiomic signature and clinical risk factors.

MATERIALS AND METHODS

This single institutional retrospective review included a total of 143 patients with IP and 75 patients with IP with malignant transformation to squamous cell carcinoma (IP-SCC). All patients underwent surgical pathology and had preoperative magnetic resonance imaging (MRI) and computed tomography (CT) sinus studies between June 2014 and February 2022. Radiomics features were extracted from contrast-enhanced T1-weighted images (CE-T1WI), T2-weighted images (T2WI), and apparent diffusion coefficient (ADC) maps. The least absolute shrinkage and selection operator (LASSO) were performed to select the features extracted from the sequences mentioned above. Independent clinical risk factors were identified by multivariate logistic regression analysis. Radiomics nomogram was constructed by incorporating independent clinical risk factors and radiomics signature. Based on discrimination and calibration, the diagnostic performance of the nomogram was evaluated.

RESULTS

Twelve radiomics features were selected to develop the radiomics model with an area under the curve (AUC) of 0.987 and 0.989, respectively. Epistaxis (p=0.011), T2 equal signal (p=0.003), extranasal invasion (p<0.001), and loss of convoluted cerebriform pattern (p=0.002) were identified as independent clinical predictors. The radiomics nomogram model showed excellent calibration and discrimination (AUC: 0.993, 95% confidence interval [CI]: 0.985–1.00 and 0.990, 95% CI: 0.974–1.00) in the training and validation sets, respectively.

CONCLUSION

The nomogram that the combined radiomics signature and clinical risk factors showed a satisfactory ability to predict IP-SCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姽婳wy发布了新的文献求助10
刚刚
lemon完成签到,获得积分10
刚刚
传奇3应助duckspy采纳,获得30
1秒前
陈木木完成签到,获得积分10
2秒前
可可西里完成签到,获得积分10
3秒前
奋斗蜗牛完成签到,获得积分10
3秒前
CipherSage应助眼睛大的擎苍采纳,获得10
3秒前
打打应助小小酥采纳,获得10
4秒前
fox完成签到 ,获得积分10
4秒前
僦是卜够完成签到 ,获得积分10
5秒前
小马甲应助嘉梦采纳,获得10
8秒前
qiqi完成签到,获得积分10
9秒前
9秒前
科研乞丐应助Jerry采纳,获得20
10秒前
vsvsgo发布了新的文献求助10
12秒前
Jeffrey完成签到,获得积分10
13秒前
明理采珊完成签到,获得积分10
13秒前
lll发布了新的文献求助10
13秒前
vsvsgo发布了新的文献求助10
16秒前
慎之完成签到 ,获得积分10
16秒前
我是微风完成签到,获得积分10
16秒前
传奇3应助木子采纳,获得30
18秒前
vsvsgo发布了新的文献求助10
20秒前
feitian201861完成签到,获得积分10
20秒前
22秒前
mmr完成签到 ,获得积分10
23秒前
大知闲闲完成签到,获得积分10
24秒前
陌陌完成签到,获得积分10
24秒前
vsvsgo发布了新的文献求助10
24秒前
科研通AI2S应助sunyanghu369采纳,获得30
26秒前
wlp鹏完成签到,获得积分10
28秒前
vsvsgo发布了新的文献求助10
28秒前
zcious完成签到,获得积分10
29秒前
Joker完成签到,获得积分10
30秒前
迷你的雁枫完成签到 ,获得积分10
31秒前
时尚俊驰发布了新的文献求助20
31秒前
luluyang完成签到 ,获得积分10
31秒前
Theprisoners举报活性炭求助涉嫌违规
32秒前
Weiyu完成签到 ,获得积分10
32秒前
vsvsgo发布了新的文献求助30
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022