Multiparametric MRI-based radiomics nomogram for predicting malignant transformation of sinonasal inverted papilloma

列线图 医学 无线电技术 置信区间 放射科 磁共振成像 逻辑回归 核医学 内科学
作者
Z. Xia,Naier Lin,W. Chen,Meng Qi,Yan Sha
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (3): e408-e416
标识
DOI:10.1016/j.crad.2023.11.004
摘要

AIM

To investigate the feasibility of a radiomics nomogram model for predicting malignant transformation in sinonasal inverted papilloma (IP) based on radiomic signature and clinical risk factors.

MATERIALS AND METHODS

This single institutional retrospective review included a total of 143 patients with IP and 75 patients with IP with malignant transformation to squamous cell carcinoma (IP-SCC). All patients underwent surgical pathology and had preoperative magnetic resonance imaging (MRI) and computed tomography (CT) sinus studies between June 2014 and February 2022. Radiomics features were extracted from contrast-enhanced T1-weighted images (CE-T1WI), T2-weighted images (T2WI), and apparent diffusion coefficient (ADC) maps. The least absolute shrinkage and selection operator (LASSO) were performed to select the features extracted from the sequences mentioned above. Independent clinical risk factors were identified by multivariate logistic regression analysis. Radiomics nomogram was constructed by incorporating independent clinical risk factors and radiomics signature. Based on discrimination and calibration, the diagnostic performance of the nomogram was evaluated.

RESULTS

Twelve radiomics features were selected to develop the radiomics model with an area under the curve (AUC) of 0.987 and 0.989, respectively. Epistaxis (p=0.011), T2 equal signal (p=0.003), extranasal invasion (p<0.001), and loss of convoluted cerebriform pattern (p=0.002) were identified as independent clinical predictors. The radiomics nomogram model showed excellent calibration and discrimination (AUC: 0.993, 95% confidence interval [CI]: 0.985–1.00 and 0.990, 95% CI: 0.974–1.00) in the training and validation sets, respectively.

CONCLUSION

The nomogram that the combined radiomics signature and clinical risk factors showed a satisfactory ability to predict IP-SCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韦谷兰完成签到,获得积分10
1秒前
22222发布了新的文献求助10
2秒前
cyh发布了新的文献求助10
4秒前
5秒前
Rondab应助loyal采纳,获得10
5秒前
大模型应助韦谷兰采纳,获得10
6秒前
TT完成签到,获得积分10
6秒前
6秒前
英子完成签到,获得积分10
9秒前
科研通AI5应助湛湛采纳,获得10
10秒前
11秒前
11秒前
12秒前
王星星发布了新的文献求助10
12秒前
LaTeXer应助科研通管家采纳,获得50
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Zhang应助科研通管家采纳,获得10
13秒前
核桃应助科研通管家采纳,获得10
13秒前
小宋同学应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
首席医官完成签到,获得积分10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
15秒前
zyh发布了新的文献求助30
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
22发布了新的文献求助10
18秒前
Jasper应助Mark采纳,获得10
19秒前
malele发布了新的文献求助10
20秒前
SciGPT应助王星星采纳,获得10
20秒前
22秒前
hyue发布了新的文献求助10
22秒前
鲤鱼似狮完成签到,获得积分10
23秒前
23秒前
23秒前
orixero应助拼搏的酸奶采纳,获得30
24秒前
小陈发布了新的文献求助10
25秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988997
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253520
捐赠科研通 3269928
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068