AMPCDA: Prediction of circRNA–disease associations by utilizing attention mechanisms on metapaths

计算机科学 疾病 计算生物学 人工智能 生物 医学 病理
作者
Pengli Lu,W. Zhang,Jinkai Wu
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:108: 107989-107989 被引量:4
标识
DOI:10.1016/j.compbiolchem.2023.107989
摘要

Researchers have been creating an expanding corpus of experimental evidences in biomedical field which has revealed prevalent associations between circRNAs and human diseases. Such linkages unveiled afforded a new perspective for elucidating etiology and devise innovative therapeutic strategies. In recent years, many computational methods were introduced to remedy the limitations of inefficiency and exorbitant budgets brought by conventional lab-experimental approaches to enumerate possible circRNA–disease associations, but the majority of existing methods still face challenges in effectively integrating node embeddings with higher-order neighborhood representations, which might hinder the final predictive accuracy from attaining optimal measures. To overcome such constraints, we proposed AMPCDA, a computational technique harnessing predefined metapaths to predict circRNA–disease associations. Specifically, an association graph is initially built upon three source databases and two similarity derivation procedures, and DeepWalk is subsequently imposed on the graph to procure initial feature representations. Vectorial embeddings of metapath instances, concatenated by initial node features, are then fed through a customed encoder. By employing self-attention section, metapath-specific contributions to each node are accumulated before combining with node's intrinsic features and channeling into a graph attention module, which furnished the input representations for the multilayer perceptron to predict the ultimate association probability scores. By integrating graph topology features and node embedding themselves, AMPCDA managed to effectively leverage information carried by multiple nodes along paths and exhibited an exceptional predictive performance, achieving AUC values of 0.9623, 0.9675, and 0.9711 under 5-fold cross validation, 10-fold cross validation, and leave-one-out cross validation, respectively. These results signify substantial accuracy improvements compared to other prediction models. Case study assessments confirm the high predictive accuracy of our proposed technique in identifying circRNA–disease connections, highlighting its value in guiding future biological research to reveal new disease mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZYY完成签到,获得积分10
刚刚
迪士尼在逃后母完成签到,获得积分10
刚刚
猪猪hero发布了新的文献求助10
刚刚
火火发布了新的文献求助20
1秒前
1秒前
BetterH完成签到 ,获得积分10
2秒前
张雯思发布了新的文献求助10
2秒前
卢街娃儿发布了新的文献求助10
2秒前
3秒前
3秒前
Zachary完成签到,获得积分10
4秒前
刘荣圣发布了新的文献求助10
6秒前
axiba发布了新的文献求助10
7秒前
ensue发布了新的文献求助10
7秒前
如果有风来完成签到,获得积分10
8秒前
谨慎小懒猪完成签到,获得积分10
8秒前
易千发布了新的文献求助30
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
卢街娃儿完成签到,获得积分10
10秒前
西瓜完成签到 ,获得积分10
10秒前
乔乔兔应助vinss66home采纳,获得10
11秒前
song完成签到,获得积分10
11秒前
12秒前
12秒前
努力搞科研完成签到,获得积分10
13秒前
baobaonaixi发布了新的文献求助10
13秒前
jwb711发布了新的文献求助10
14秒前
lzj001983完成签到,获得积分10
14秒前
14秒前
Xu发布了新的文献求助10
14秒前
14秒前
gongzalez发布了新的文献求助10
14秒前
无花果应助之众采纳,获得10
14秒前
苹果雁桃发布了新的文献求助10
15秒前
lalala发布了新的文献求助10
16秒前
桐桐应助紫心采纳,获得10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011410
求助须知:如何正确求助?哪些是违规求助? 3551064
关于积分的说明 11307404
捐赠科研通 3285285
什么是DOI,文献DOI怎么找? 1811033
邀请新用户注册赠送积分活动 886756
科研通“疑难数据库(出版商)”最低求助积分说明 811634