AMPCDA: Prediction of circRNA–disease associations by utilizing attention mechanisms on metapaths

计算机科学 疾病 计算生物学 人工智能 生物 医学 病理
作者
Pengli Lu,W. Zhang,Jinkai Wu
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:108: 107989-107989 被引量:2
标识
DOI:10.1016/j.compbiolchem.2023.107989
摘要

Researchers have been creating an expanding corpus of experimental evidences in biomedical field which has revealed prevalent associations between circRNAs and human diseases. Such linkages unveiled afforded a new perspective for elucidating etiology and devise innovative therapeutic strategies. In recent years, many computational methods were introduced to remedy the limitations of inefficiency and exorbitant budgets brought by conventional lab-experimental approaches to enumerate possible circRNA–disease associations, but the majority of existing methods still face challenges in effectively integrating node embeddings with higher-order neighborhood representations, which might hinder the final predictive accuracy from attaining optimal measures. To overcome such constraints, we proposed AMPCDA, a computational technique harnessing predefined metapaths to predict circRNA–disease associations. Specifically, an association graph is initially built upon three source databases and two similarity derivation procedures, and DeepWalk is subsequently imposed on the graph to procure initial feature representations. Vectorial embeddings of metapath instances, concatenated by initial node features, are then fed through a customed encoder. By employing self-attention section, metapath-specific contributions to each node are accumulated before combining with node's intrinsic features and channeling into a graph attention module, which furnished the input representations for the multilayer perceptron to predict the ultimate association probability scores. By integrating graph topology features and node embedding themselves, AMPCDA managed to effectively leverage information carried by multiple nodes along paths and exhibited an exceptional predictive performance, achieving AUC values of 0.9623, 0.9675, and 0.9711 under 5-fold cross validation, 10-fold cross validation, and leave-one-out cross validation, respectively. These results signify substantial accuracy improvements compared to other prediction models. Case study assessments confirm the high predictive accuracy of our proposed technique in identifying circRNA–disease connections, highlighting its value in guiding future biological research to reveal new disease mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenll1988完成签到 ,获得积分10
刚刚
fiu~完成签到 ,获得积分10
刚刚
无意识形态完成签到,获得积分10
1秒前
李志明完成签到,获得积分10
1秒前
yangjianya完成签到,获得积分20
2秒前
老隋完成签到,获得积分20
2秒前
3秒前
贾小闲完成签到,获得积分10
3秒前
prosperp举报Jackson求助涉嫌违规
4秒前
无心的秋珊完成签到 ,获得积分10
4秒前
zyc1111111完成签到,获得积分10
5秒前
6秒前
正直冰露发布了新的文献求助10
6秒前
高高ai发布了新的文献求助10
7秒前
胜天半子发布了新的文献求助10
9秒前
QQ完成签到,获得积分10
9秒前
9秒前
研友_LOqqmZ完成签到 ,获得积分10
11秒前
Jiny完成签到,获得积分10
12秒前
Wendy完成签到,获得积分10
12秒前
薛定谔的猫应助从容寒松采纳,获得20
12秒前
无医完成签到,获得积分10
13秒前
苏书白完成签到 ,获得积分10
14秒前
15秒前
16秒前
叽叽叽完成签到,获得积分20
17秒前
zz发布了新的文献求助10
17秒前
...完成签到,获得积分10
17秒前
shionn完成签到,获得积分10
19秒前
无敌反派大美人应助鑫7采纳,获得10
19秒前
大海123完成签到,获得积分10
19秒前
19秒前
知123完成签到,获得积分10
20秒前
TheBugsss完成签到,获得积分10
21秒前
叽叽叽发布了新的文献求助10
21秒前
wanghuan完成签到,获得积分20
25秒前
415484112完成签到,获得积分10
26秒前
小徐关注了科研通微信公众号
27秒前
爆米花应助pear采纳,获得10
28秒前
虚拟的怀绿完成签到,获得积分10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3357089
求助须知:如何正确求助?哪些是违规求助? 2980585
关于积分的说明 8695191
捐赠科研通 2662283
什么是DOI,文献DOI怎么找? 1457752
科研通“疑难数据库(出版商)”最低求助积分说明 674849
邀请新用户注册赠送积分活动 665878